TITAN PLATE C CONCRETE

PLATES FOR SHEAR LOADS

VERSATILE

Suitable for a continuous fastening of both CLT (Cross Laminated Timber) panels and framed panels to the sub-structure.

INNOVATIVE

Designed to be partially or completely fastened with nails or screws. Possibility of installation even in the presence of bedding mortar.

CALCULATED AND CERTIFIED

CE marking according to EN 14545. Available in 2 versions. TCP300 with increased thickness optimised for CLT.

CHARACTERISTICS

FOCUS	shear joints on concrete
HEIGHT	200 300 mm
THICKNESS	3,0 4,0 mm
FASTENERS	LBA, LBS, VIN-FIX PRO, EPO-FIX PLUS, AB1, SKR

MATERIAL

Bright zinc plated carbon steel, two dimensional perforated plate.

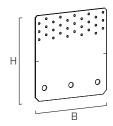
FIELDS OF USE

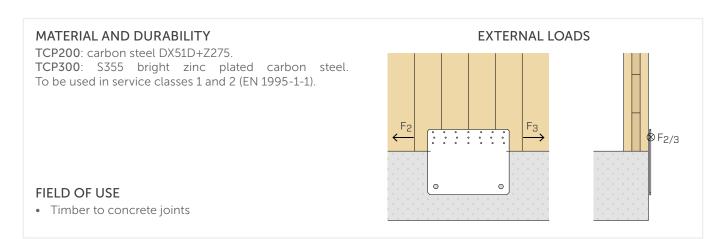
Timber-to-concrete shear joints for panels and timber beams

- CLT, LVL
- solid timber and glulam
- framed structures (platform frame)
- timber based panels

ADDED STOREYS

Ideal for making flat joints between concrete or masonry elements and CLT panels. Construction of continuous shear connections.

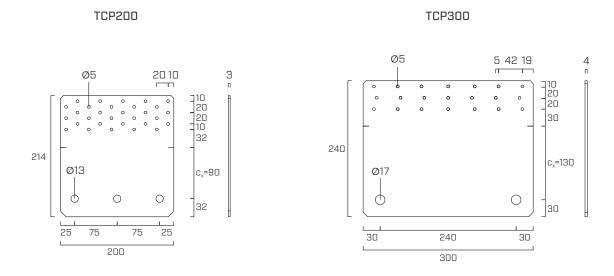

CONCRETE KERB


Versatile fastening configurations. Solutions designed, calculated, tested and certified with partial and total fastening, with horizontal or vertical fibre direction.

CODES AND DIMENSIONS

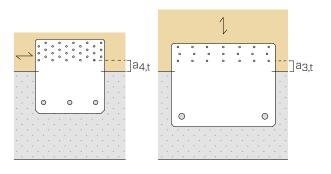
TITAN PLATE TCP

CODE	В	Н	holes	n _v Ø5	S		pcs
	[mm]	[mm]		[pcs]	[mm]	g ** ** **	
TCP200	200	214	Ø13	30	3	•	10
TCP300	300	240	Ø17	21	4	•	5



■ ADDITIONAL PRODUCTS - FASTENING

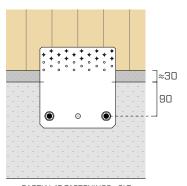
type	description		d	support	page
			[mm]		
LBA	Anker nail	<u> </u>	4	27777)	548
LBS	screw for plates	(<u>)</u>	5		552
SKR	screw anchor		12 - 16		488
VIN-FIX PRO	chemical anchor		M12 - M16		511
EPO-FIX PLUS	chemical anchor		M12 - M16		517


GEOMETRY

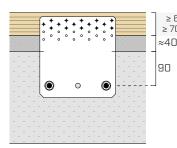
INSTALLATION

TIMBER minimum distand	ces		nails LBA Ø4	screws LBS Ø5
C/GL	a _{4,t}	[mm]	≥ 20	≥ 25
CLT	a _{3,t}	[mm]	≥ 28	≥ 30

- C/GL: minimum distances for solid timber or glulam consistent with EN 1995-1-1 according to ETA considering a timber density $\rho_k \le 420 \text{ kg/m}^3$
- CLT minimum distances for Cross Laminated Timber according to ÖNORM EN 1995-1-1 (Annex K) for nails and ETA 11/0030 for screws

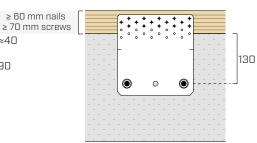


PARTIAL FASTENING

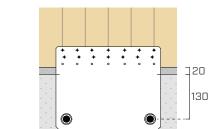

In the presence of design requirements such as varying stress values or the presence of a levelling layer between the wall and the support surface, it is possible to use pre-calculated partial nailing or to position the plates as required (e.g. lowered plates) taking care to respect the minimum distances indicated in the table and verify the strength of the anchor-to-concrete group taking into account the increase in distance from the edge (c_x). Below there are some examples of possible limit configurations:

TCP200

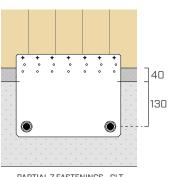
TCP300

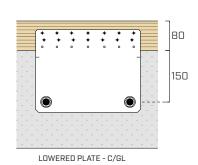


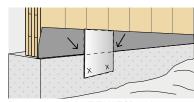
PARTIAL 15 FASTENINGS - CLT

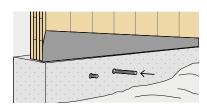


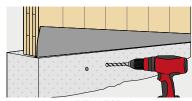
≥ 60 mm nails

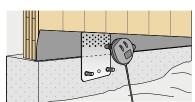

PARTIAL 15 FASTENINGS - C/GL

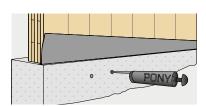

LOWERED PLATE - C/GL

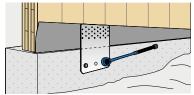

PARTIAL 14 FASTENINGS - CLT


PARTIAL 7 FASTENINGS - CLT

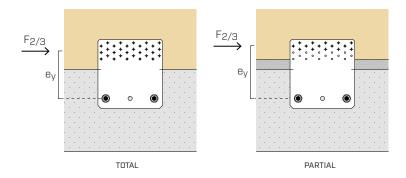

ASSEMBLY


Positioning of the TITAN TCP with the dashed line at the timber-concrete interface and hole marking


Injection of the anchor and insertion of the threaded rods into the holes


Removal of the TITAN TCP plate and drilling of the concrete support

Installation of the TITAN TCP and nailing


Accurate hole cleaning

Positioning of nuts and washers by adequate tightening

■ STATIC VALUES | TIMBER-TO-CONCRETE SHEAR JOINT

TCP200

TIMBER STRENGTH

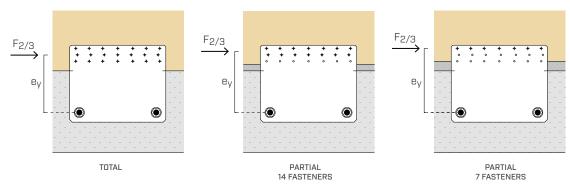
	TIMBER					STEEL		CONCRETE		
configuration	holes fastening Ø5			R _{2/3,k timber} (1)	R _{2/3,k CLT} ⁽²⁾	R _{2/3,k steel}		holes fastening Ø13		
on timber	type	ØxL	n _v					Ø	n _v	e _y (3)
		[mm]	[pcs]	[kN]	[kN]	[kN]	Ysteel	[mm]	[pcs]	[mm]
• total fastening	LBA nails	Ø4,0 x 60	30	55,6	70,8	21,8	Үм2			147
	LBS screws	Ø5,0 x 60	30	54,1	69,9					147
	LBA nails	Ø4,0 x 60	15	27,8	35,4	20,5 γ _{M2}		M12	2	160
partial fastening	LBS screws	Ø5,0 x 60	15	27,0	35,0		Үм2			162

CONCRETE STRENGTH

Concrete strength values of some of the possible anchoring solutions, according to the configurations adopted for fastening on timber (e_y) . It is assumed that the plate is positioned with the assembly notches at the timber-to-concrete interface (distance between anchor and concrete edge $c_x = 90$ mm).

			total fastening (e _y = 147 mm)	partial fastening (e _y = 162 mm)
configuration	holes fast	ening Ø13	R _{2/3,d} ,	concrete
on concrete	type	Ø x L		
		[mm]	[kN]	[kN]
	VIN-FIX PRO 5.8	M12 x 130	14,3	13,0
• uncracked	SKR-E	12 x 90	12,6	11,4
• uncrackeu	AB1	M12 x 100	13,1	11,9
	VIN-FIX PRO 5.8	M12 x 130	10,1	9,2
• cracked	SKR-E	12 x 90	8,9	8,1
	AB1	M12 x 100	9,2	8,4
	EPO-FIX PLUS 5.8	M12 x 130	6,5	6,1
• seismic	EPO-FIX PLUS 5.8	M12 x 180	9,3	8,4

NOTES:


 $^{^{(1)}}$ Strength values for use on solid timber or glulam platform beam, calculated considering the effective number according to Table 8.1 (EN 1995 -1-1).

⁽²⁾ Strength values for use on CLT.

⁽³⁾ Eccentricity of calculation for verification of the anchor-to-concrete group.

■ STATIC VALUES | TIMBER-TO-CONCRETE SHEAR JOINT

TCP300

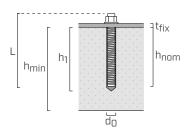
TIMBER STRENGTH

		TIMBER					EEL	С	DNCRETE	
configuration	holes fastening Ø5			R _{2/3,k timber} (1)	R _{2/3,k CLT} (2)	R _{2/3,k steel}		holes fastening Ø17		
on timber	type	ØxL	n _v					Ø	n _v	e _y (3)
		[mm]	[pcs]	[kN]	[kN]	[kN]	Ysteel	[mm]	[pcs]	[mm]
Andre Control of	LBA nails	Ø4,0 x 60	21	38,4	49,6	64.0	Үм2			400
total fastening	LBS screws	Ø5,0 x 60	21	36,9	48,9	64,0				180
partial fastening	LBA nails	Ø4,0 x 60	14	25,6	33,0			M16	2	100
14 fasteners	LBS screws	Ø5,0 x 60	14	24,6	32,6	60,5	Үм2			190
partial fastening	LBA nails	Ø4,0 x 60	7	12,8	16,5					200
7 fasteners	LBS screws	Ø5,0 x 60	7	12,3	16,3	57,6	Үм2			200

CONCRETE STRENGTH

Concrete strength values of some of the possible anchoring solutions, according to the configurations adopted for fastening on timber (e_y) . It is assumed that the plate is positioned with the assembly notches at the timber-to-concrete interface (distance between anchor and concrete edge $c_x = 130$ mm).

			total fastening (e _y = 180 mm)	partial fastening (e _y = 190 mm)	partial fastening (e _y = 200 mm)			
configuration	holes faste	ening Ø17	R _{2/3,d concrete}					
on concrete	type	ØxL						
		[mm]	[kN]	[kN]	[kN]			
	VIN-FIX PRO 5.8	M16 x 190	34,4	32,7	31,1			
• uncracked	SKR-E	16 x 130	29,7	28,2	26,8			
	AB1	M16 x 145	30,2	28,7	27,3			
	VIN-FIX PRO 5.8	M16 x 190	24,4	23,2	22,0			
• cracked	SKR-E	16 x 130	21,0	19,9	19,0			
	AB1	M16 x 145	21,4	20,3	19,3			
. esismis	EPO-FIX PLUS 5.8	M16 x 190	16,6	16,0	15,4			
• seismic	EPO-FIX PLUS 8.8	M16 x 230	21,1	20,3	19,4			


GENERAL PRINCIPLES:

General calculation principles see page 260.

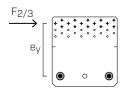
ANCHORS INSTALLATION PARAMETERS | TCP200 - TCP300

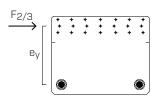
installation	anchor type		t _{fix}	h _{ef}	h _{nom}	h ₁	d ₀	h _{min}	
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
	VIN-FIX PRO EPO-FIX PLUS 5.8	M12 x 130	3	112	112	120	14		
TCP200	SKR-E	12 x 90	3	64	87	110	10	150	
	AB1	M12 x 100	3	70	80	85	12		
	EPO-FIX PLUS 5.8	M12 x 180	3	161	161	170	14	200	
TCP300	VIN-FIX PRO EPO-FIX PLUS 5.8	M16 x 190	4	164	164	170	18		
	SKR-E	16 x 130	4	85	126	150	14	200	
	AB1	M16 x 145	4	85	97	105	16		
	EPO-FIX PLUS 8.8	M16 x 230	4	200	200	205	14	240	

Precut INA threaded rod, with nut and washer; see page 520 MGS threaded rod class 8.8 to be cut to size: see page 534

 t_{fix} h_{nom} h_1 d_o h_{min}

fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness


ANCHORS FOR CONCRETE VERIFICATION | TCP200 - TCP300


Fastening to concrete using anchors must be verified on the basis of the stressing forces of the anchors, which depend on the timber fastening configuration.

The position and number of nails/screws determine the e_y eccentricity value, understood as the distance between the centre of gravity of the nailing and that of the anchors.

The anchor group must be verified for:

$$V_{Sd,x} = F_{2/3,d}$$

 $M_{Sd,z} = F_{2/3,d} \times e_y$

GENERAL PRINCIPLES:

• Characteristic values according to EN 1995-1-1. The design values of the anchors for concrete are calculated in accordance with the respective European Technical Assessments.

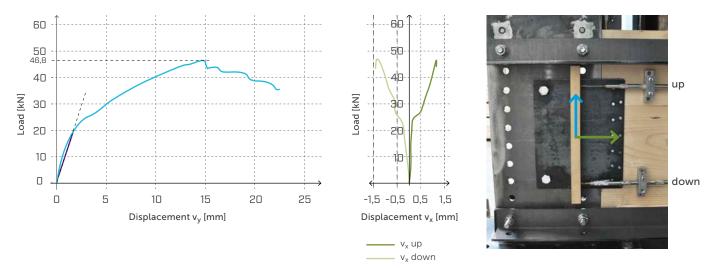
The connection design strength value is obtained from the values on the table as follows:

$$R_{d} = min \begin{cases} \frac{(R_{k, timber} \text{ or } R_{k, CLT}) \cdot K_{mod}}{\gamma_{M}} \\ \frac{R_{k, steel}}{\gamma_{steel}} \\ R_{d, concrete} \end{cases}$$

The coefficients $k_{mod},\,y_{M}$ and y_{steel} should be taken according to the current regulations used for the calculation.

- The calculation process used a timber characteristic density of $\rho_k = 350 \text{ kg/m}^3$ and C25/30 concrete with a thin reinforcing layer and minimum thickness indicated in the table.
- Dimensioning and verification of timber and concrete elements must be carried out separately.
- The strength values are valid for the calculation hypotheses defined in the table; for boundary conditions different from the ones in the table (e.g. minimum distances from the edge), the anchors-to-concrete can be verified using MyProject calculation software according to the design requirements.
- Seismic design in performance category C2, without ductility requirements on anchors (option a2) elastic design according to EOTA TR045. For chemical anchors it is assumed that the annular space between the anchor and the plate hole is filled (α_{gap} =1).

EXPERIMENTAL INVESTIGATIONS | TCP300


In order to calibrate the numerical models used for the design and verification of the TCP300 plate, an experimental campaign was carried out in collaboration with the Institute for BioEconomy (IBE) - San Michele all'Adige.

The connection system, nailed or screwed to CLT panels, has been shear stressed through monotonic tests in displacement control registering the load, displacement in the two main directions and collapse mode.

The results obtained were used to validate the analytical calculation model for the TCP300 plate, based on the hypothesis that the shear centre is placed at the centre of gravity of the fastenings on timber and therefore that the anchors, usually the weak point of the system, are stressed not only by the shear actions but also by the local moment.

The study in different fastening configurations (Ø4 nails/Ø5 screws, full nailing, partial nailing with 14 connectors, partial nailing with 7 connectors) shows that the mechanical behaviour of the plate is strongly influenced by the relative stiffness of the connectors on timber compared to that of the anchors, in tests simulated by bolting on steel.

In all cases a shear failure mode of the timber fasteners has been observed that does not result in evident plate rotation. Only in some cases (full nailing) the non-negligible rotation of the plate leads to an increase in stress on the timber fasteners resulting from a redistribution of the local moment with consequent stress relief on the anchors, which represent the limiting point of the overall strength of the system.

Load-to-displacement diagrams for TCP300 specimen with partial nailing (no. 14 LBA Ø4 x 60 mm nails)

Further investigations are necessary in order to define an analytical model that can be generalized to the different configurations of use of the plate that is able to provide the actual stiffness of the system and the redistribution of stresses as the boundary conditions (connectors and base materials) vary.