ANGLE BRACKET FOR SHEAR AND TENSILE FORCES

TITAN N


Ideal for CLT, it is easy to install thanks to the raised holes. Values also certified with partial fastening for presence of bedding mortar or root beam.

80 kN SHEAR

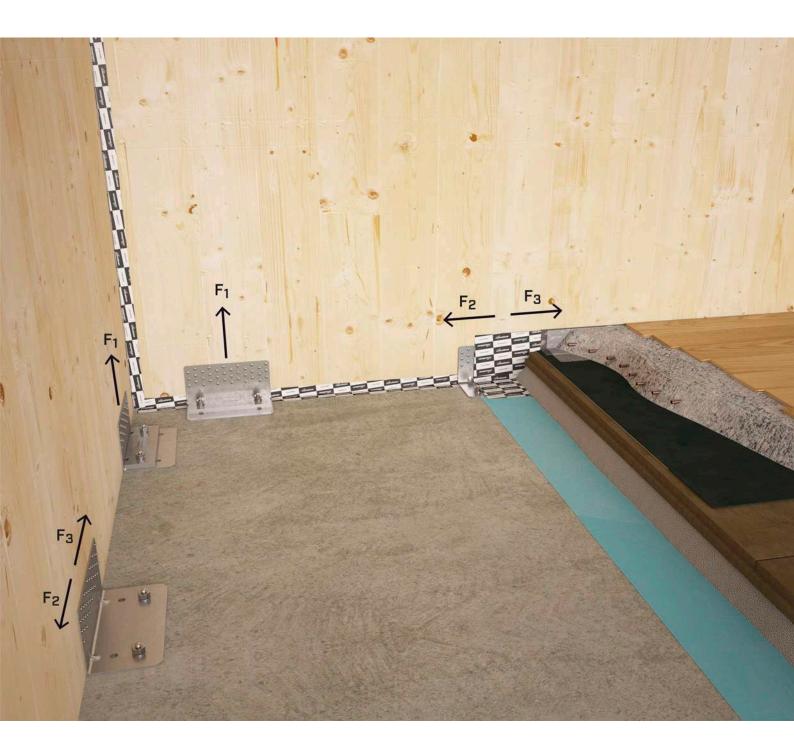
Exceptional shear strengths. Up to 82,6 kN on concrete (with TCW washer). Up to 46,7 kN on timber.

70 kN TENSILE

On concrete, TCN angle brackets with TCW washers provide excellent tensile strength. $R_{1,k}$ up to 69,8 kN characteristic values.

CHARACTERISTICS

FOCUS	shear and tensile joints
HEIGHT	120 mm
THICKNESS	3,0 mm
FASTENERS	LBA, LBS, VIN-FIX PRO, EPO-FIX PLUS, SKR, AB1


MATERIAL

Bright zinc plated carbon steel, three dimensional perforated plate.

FIELDS OF USE

Shear and tensile joints for timber-to-concrete and timber-to-timber applications

- CLT, LVL
- solid timber and glulam
- framed structures (platform frame)
- timber based panels

CONCEALED HOLD DOWN

Ideal on timber-to-concrete both as a hold down at the ends of the walls and as shear angle bracket along the walls. It can be integrated into the floor panels.

ALL DIRECTIONS

Certified shear $(F_{2,3})$, tensile (F_1) and tilting $(F_{4,5})$ strengths. Values certified also for partial fastenings and with interposed acoustic profiles.

CODES AND DIMENSIONS

TITAN N - TCN | CONCRETE-TO-TIMBER JOINTS

CODE	В	Ρ	Н	holes	n _v Ø5	S		pcs
	[mm]	[mm]	[mm]	[mm]	[pcs]	[mm]	ф. В . В	
TCN200	200	103	120	Ø13	30	3	•	10
TCN240	240	123	120	Ø17	36	3	٠	10

TITAN WASHER - TCW | CONCRETE-TO-TIMBER JOINTS

CODE	TCN200	TCN240	В	Р	S	holes		pcs
			[mm]	[mm]	[mm]	[mm]	ф р . В 6 . Ф . Ц	
TCW200	٠	-	190	72	12	Ø14	•	1
TCW240	-	٠	230	73	12	Ø18	•	1

TITAN N - TTN | TIMBER-TO-TIMBER JOINTS

CODE	В	Ρ	Н	n _H Ø5	n _v Ø5	S	シリ	pcs
	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	<u> </u>	
TTN240	240	93	120	36	36	3	•	10

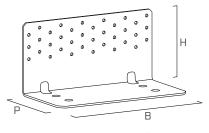
ACOUSTIC PROFILE | TIMBER-TO-TIMBER JOINTS

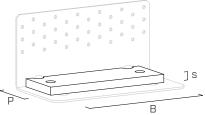
CODE	type	В	Р	s	シリ	pcs
			[mm]	[mm]		
XYL35120240	xylofon plate	240 mm	120	6	•	10
ALADIN95	soft	50 m ^(*)	95	5	•	10
ALADIN115	extra soft	50 m ^(*)	115	7	•	10

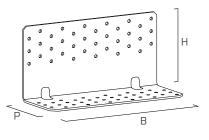
 $^{(st)}$ To be cut on site.

MATERIAL AND DURABILITY

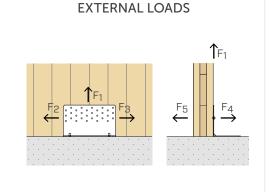
TITAN N: carbon steel DX51D+Z275. TITAN WASHER: S235 bright zinc plated carbon steel. To be used in service classes 1 and 2 (EN 1995-1-1).

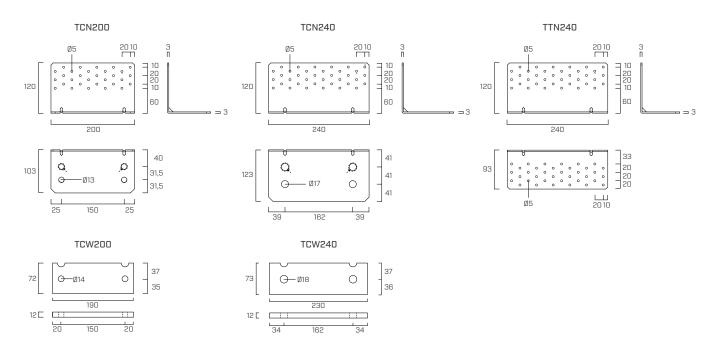

XYLOFON PLATE: 35-shore polyurethane compound. ALADIN STRIPE: Compact EPDM.

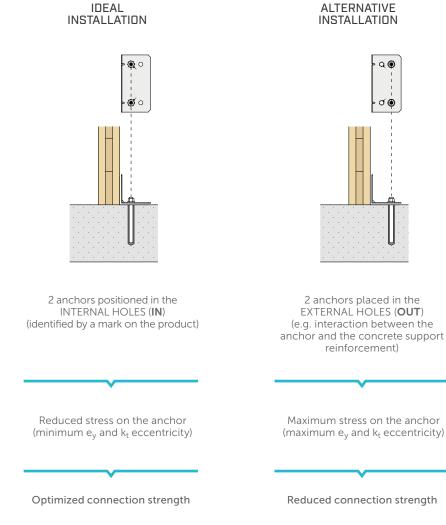

FIELD OF USE


- Timber-to-concrete joints
- Timber-to-timber joints
- Timber-to-steel joints

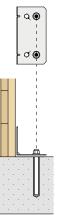
ADDITIONAL PRODUCTS - FASTENING


type	description		d	support	page
			[mm]		
LBA	Anker nail		4	2)))))	548
LBS	screw for plates	()⊐ 4111111111+ >	5	2)))))	552
AB1	mechanical anchor		12 - 16		494
SKR	screw anchor		12 - 16		488
VIN-FIX PRO	chemical anchor		M12 - M16		511
EPO-FIX PLUS	chemical anchor		M12 - M16		517



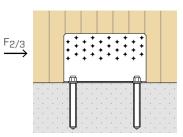


GEOMETRY


INSTALLATION ON CONCRETE

To fix TITAN TCN angle bracket to the concrete foundation, 2 anchors must be used, according to one of the following installation configurations, according to the acting stress.

ALTERNATIVE


INSTALLATION WITH WASHER

anchor and the concrete support

The WASHER TCW must be fastened by means of 2 anchors positioned in the INTERNAL HOLES (IN)

TCN200

TIMBER STRENGTH

		TIMBER				CONCRETE				
configuration		holes fastening Ø5			holes fastening Ø13 IN ⁽²⁾			OUT ⁽³⁾		
on timber ⁽¹⁾	type	ØxL	n _v		Ø	n _H	e _{y,IN}	e _{y,OUT}		
		[mm]	[pcs]	[kN]	[mm]	[pcs]	[mm]	[mm]		
a full pattorp	LBA nails	Ø4,0 x 60	30	22,1	M12	2	38,5	70,0		
 full pattern 	LBS screws	Ø5,0 x 50		26,5						
a pattorn 4	LBA nails	Ø4,0 x 60	- 25 -	17,4						
• pattern 4	LBS screws	Ø5,0 x 50		20,4						
• pattern 3	LBA nails	Ø4,0 x 60	20	13,7						
• pattern 5	LBS screws	Ø5,0 x 50	20	16,0						
• pattern 2	LBA nails	Ø4,0 x 60	15	9,6						
• pattern 2	LBS screws	Ø5,0 x 50	15	11,2						
• pattern 1	LBA nails	Ø4,0 x 60	10	6,4						
• pattern 1	LBS screws	Ø5,0 x 50	10	7,5						

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions for anchors installed in the inner (IN) or outer (OUT) holes.

configuration	holes faste	ning Ø13	R _{2/3,d}	concrete
on concrete	type	ØxL	IN ⁽²⁾	OUT ⁽³⁾
		[mm]	[kN]	[kN]
	VIN-FIX PRO 5.8	M12 x 130	29,7	24,4
 uncracked 	VIN-FIX PRO 8.8	M12 x 130	48,1	39,1
• uncracked	SKR-E	12 x 90	38,3	31,3
	AB1	M12 x 100	35,4	28,9
	VIN-FIX PRO 5.8	M12 x 130	29,7	24,4
 cracked 	VIN-FIX PRO 8.8	M12 x 130	35,1	28,9
• cracked	SKR-E	12 x 90	34,6	28,4
	AB1	M12 x 100	35,4	28,9
	EPO-FIX PLUS 5.8/8.8	M12 x 130	19,2	15,7
• seismic	SKR-E	12 x 90	8,8	7,2
	AB1	M12 x 100	10,6	8,7

installation	anchor type		t _{fix}	h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
TCN200	VIN-FIX PRO EPO-FIX PLUS 5.8/8.8	M12 X 130	3	112	112	120	14	
	SKR-E	12 x 90	3	64	87	110	10	200
	AB1	M12 x 100	3	70	80	85	12	

Precut INA threaded rod, with nut and washer: see page 520 MGS threaded rod class 8.8 to be cut to size: see page 534

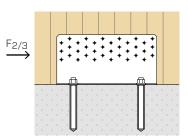
NOTES:

⁽¹⁾ Partial fastening pattern on page 192.

 $^{\rm (3)}\,$ Installation of the anchors in external holes (OUT).

t_{fix} h_{nom} h_{ef} h₁ d₀

h_{min}


fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth

concrete minimum thickness

hole diameter in the concrete support

 $^{\left(2\right) }$ Installation of the anchors in the two internal holes (IN).

TCN240

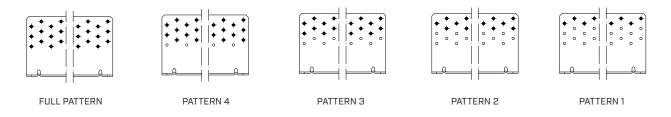
TIMBER STRENGTH

		TIMBE	R		CONCRETE			
configuration	holes fastening Ø5			R _{2/3,k timber}	holes fast	ening Ø17	IN ⁽²⁾	OUT ⁽³⁾
on timber ⁽¹⁾	type	Ø x L [mm]	n _v [pcs]	[kN]	Ø [mm]	n _H [pcs]	e _{y,IN} [mm]	е _{у,оит} [mm]
. full pattorn	LBA nails	Ø4,0 x 60	36	30,3	M16	2	39,5	80,5
 full pattern 	LBS screws	Ø5,0 x 50		36,3				
- pattorn (LBA nails	Ø4,0 x 60	- 30 -	24,0				
• pattern 4	LBS screws	Ø5,0 x 50		28,2				
• pattern 3	LBA nails	Ø4,0 x 60	24	18,8				
• pattern 5	LBS screws	Ø5,0 x 50	24	22,1				
• pattern 2	LBA nails	Ø4,0 x 60	18	13,3				
• pattern z	LBS screws	Ø5,0 x 50	10	15,6				
a pattorn 1	LBA nails	Ø4,0 x 60	12 -	8,9				
• pattern 1	LBS screws	Ø5,0 x 50		10,4				

CONCRETE STRENGTH

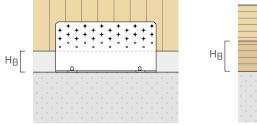
Strength values of some of the possible fastening solutions for anchors installed in the inner (IN) or outer (OUT) holes.

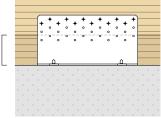
configuration	holes faste	ning Ø17	R _{2/3,d}	concrete
on concrete	type	ØxL	IN ⁽²⁾	OUT ⁽³⁾
		[mm]	[kN]	[kN]
	VIN-FIX PRO 5.8	M16 x 160	55,8	43,9
 uncracked 	VIN-FIX PRO 8.8	M16 x 160	90,1	70,9
	SKR-E	16 x 130	67,4	53,1
	AB1	M16 x 145	67,4	53,1
	VIN-FIX PRO 5.8/8.8	M16 x 160	55,0	43,2
• cracked	SKR-E	16 x 130	55,0	43,2
	AB1	M16 x 145	55,0	43,2
	EPO-FIX PLUS 5.8	M16 x 160	26,6	21,1
• seismic	EPO-FIX PLUS 8.8	M16 x 160	28,1	21,9
• seismic	SKR-E	16 x 130	19,9	15,8
	AB1	M16 x 145	19,9	15,8


installation	anchor type		t _{fix}	h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
TCN240	VIN-FIX PRO EPO-FIX PLUS 5.8/8.8	M16 x 160	3	137	137	145	18	
	SKR-E	16 x 130	3	85	127	150	14	200
	AB1	M16 x 145	3	85	97	105	16	

Precut INA threaded rod, with nut and washer: see page 520 MGS threaded rod class 8.8 to be cut to size: see page 534

GENERAL PRINCIPLES:


TCN200 - TCN240 | PARTIAL FASTENING PATTERNS FOR STRESS F2/3


In the presence of design requirements such as $F_{2/3}$ stresses of different value or the presence of an intermediate H_B layer (levelling mortar, sill or ground) between the wall and the supporting surface, partial fastening patterns can be adopted:

Pattern 2 also applies in case of F_4 , F_5 and $F_{4/5}$ stresses.

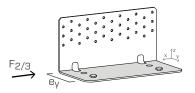
MAXIMUM HEIGHT OF THE INTERMEDIATE $\mathrm{H}_{\mathrm{B}}\,\mathrm{LAYER}$

	CLT					GL	
configuration on timber	n _v holes	Ø5 [pcs]	H _{B max}	, [mm]	H _{B max} [mm]		
	TCN200	TCN240	nails LBA Ø4	screws LBS Ø5	nails LBA Ø4	screws LBS Ø5	
• full pattern	30	36	20	30	32	10	
• pattern 4	25	30	30	40	42	20	
• pattern 3	20	24	40	50	52	30	
• pattern 2	15	18	50	60	62	40	
• pattern 1	10	12	60	70	72	50	

The height of the H_B intermediate layer (levelling mortar, sill or timber platform beam) is determined by taking into account the following regulatory requirements for fastenings on timber:

CLT: minimum distances according to ÖNORM EN 1995-1-1 (Annex K) for nails and ETA-11/0030 for screws.

• C/GL: minimum distances for solid timber or glulam with horizontal fibres consistent with EN 1995-1-1 according to ETA considering a timber density of $\rho_{k} \le 420 \text{ kg/m}^3$.


TCN200 - TCN240 | VERIFICATION OF ANCHORS FOR CONCRETE FOR F_{2/3} STRESS

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (e).

Ey calculation eccentricities vary depending on the type of installation selected: 2 internal anchors (IN) or 2 external anchors (OUT).

The anchor group must be verified for:

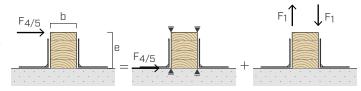
 $V_{Sd,x} = F_{2/3,d}$ $M_{Sd,z} = F_{2/3,d} \times e_{y'IN/OUT}$

STATIC VALUES | SHEAR JOINT F₄ - F₅ - F_{4/5} |TIMBER-TO-CONCRETE

TCN200-TCN240

			TIMBER			ST	EEL	CONCRETE			
		hol	es fastening Ø	5	R _{4,k timber}	R _{4,k steel}		holes fastening		IN ⁽¹⁾	
F ₄		type	ØxL	n _v				Ø	n _H	$k_{t\perp}$	k _{t//}
			[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]		
	- full pailing	LBA nails	Ø4,0 x 60	30	20.0	22,4					
N200	• full nailing	LBS screws	Ø5,0 x 50	50	20,9	22,4	Үмо	M12	2	0,5	-
11200	• pattern 2	LBA nails	Ø4,0 x 60	15		24,3		MIZ			
	• pattern z	LBS screws	Ø5,0 x 50	10	20,7	24,5	Үмо				
	full pailing	LBA nails	Ø4,0 x 60	36	24,1	26,9					
N240	• full nailing	LBS screws	Ø5,0 x 50	30	24,1	20,9	Үмо	M1C	2	0.5	
CN240	, pattarp 2	LBA nails	Ø4,0 x 60	10	27.0	20.1		M16	2	0,5	-
	• pattern 2	LBS screws	Ø5,0 x 50	18	23,9	29,1	Үмо				

The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_{t\perp} \times F_{4,d}$


TIMBER					STI	EEL	CONCRETE					
		ho	les fastening Ø	5	R _{5,k timber}	R _{5,k}	steel	holes fa	stening	IN	(1)	
F ₅		type	ØxL	n _v				Ø	n _H	$k_{t\perp}$	k _{t//}	
			[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]			
• full pattern	LBA nails	Ø4,0 x 60	30	6,6	2,7				0,5	0,47		
TCN200	• full pattern	LBS screws	Ø5,0 x 50	50	0,0	۷, ۱	Үмо	M12	2	0,5	0,47	
TCN200	• pattern 2	LBA nails	Ø4,0 x 60	15	3,6	1,6		IMIZ	2	0,5	0,83	F _{bolt,//}
	• pattern z	LBS screws	Ø5,0 x 50	10	5,0	1,0	Үмо			0,5	0,65	
	• full pattern	LBA nails	Ø4,0 x 60	36	8,0	3,3				0,5	0,48	F5 Fbolt,⊥
TCN240	• Tull pattern	LBS screws	Ø5,0 x 50	30	0,0	3,3	Үмо	M16	2	0,5	0,40	
• pa	pattern 2	LBA nails	Ø4,0 x 60	18	4.7	1,9		1110		0,5	0,83	
		LBS screws	Ø5,0 x 50	TO	4,3	1,9	Үмо			0,5	0,05	· · · · · · · · · · · · · · · · · · ·

The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_{t\perp} \times F_{5,d}$; $N_{Sd,z} = 2 \times k_{t/r} \times F_{5,d}$

			TIMBER			STEEL CONCR			RETE		
_		hol	es fastening Ø	5	R _{4/5,k timber}	R _{4/5} ,	k steel	holes fa	stening	IN	(1)
F _{4/5} TWI AN	GLE BRACKETS	type	ØxL	n _v				Ø	n _H	$\mathbf{k}_{t\perp}$	k _{t//}
11107.11			[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]		
	- full pattorn	LBA nails	Ø4,0 x 60	30 + 30	25.6	14,9				0,41	0,08
TCN200	• full pattern	LBS screws	Ø5,0 x 50	50 + 50	30 25,6	14,9	Үмо	M12	2 + 2	0,41	0,08
I CN200	• pattern 2	LBA nails	Ø4,0 x 60	15 + 15	22,4	20,9		MIZ	2+2	0,46	0,06
	• pattern z	LBS screws	Ø5,0 x 50	12 + 12	22,4	20,9	Үмо			0,40	0,00
	• full pattern	LBA nails	Ø4,0 x 60	36 + 36	27,8	24,7				0,43	0,06
CN240	• full pattern	LBS screws	Ø5,0 x 50	30 + 30	27,0	24,7	Үмо	M16	2 + 2	0,43	0,00
CN240	• pattern 2	LBA nails	Ø4,0 x 60	18 + 18	25,2	30.,6		1110	2 + 2	0,48	0,04
	• pattern 2	LBS screws	Ø5,0 x 50	10 + 10	23,2	50.,0	Үмо			0,40	0,04

The group of 2 anchors must be verified for: $V_{Sd,y} = 2 \times k_{t\perp} \times F_{4/5,d}$; $N_{Sd,z} = 2 \times k_{t/} \times F_{4/5,d}$

The F₄, F₅, F_{4/5} values in the table are valid for the acting stress calculation eccentricity e=0 (timber elements prevented from rotating). For joints with 2 angle brackets, in case the stress F_{4/5,d} is applied with eccentricity e≠0, the verification for combined loads is required considering the contribution of the additional tensile component:

 $\Delta F_{1,d} = F_{4/5,d} \cdot \frac{e}{b}$

NOTES:

 $^{(1)}$ Installation of the anchors in the two internal holes (IN).

GENERAL PRINCIPLES:

TCN200 + TCW200

TIMBER STRENGTH

		TIMBER					CONCRETE					
configuration	ho	R _{2/3,k timber}	holes fast	ening Ø13	IN ⁽¹⁾							
on timber	type	ØxL	n _v		Ø	n _H	e _{y,IN}	e _{z,IN}				
		[mm]	[pcs]	[kN]	[mm]	[pcs]	[mm]	[mm]				
	LBA nails	Ø4,0 x 60	30	56,7	M12	2	38,5	83,5				
TCN200 + TCW200	LBS screws	Ø5,0 x 50	30	66,4								

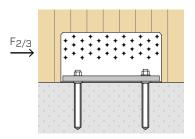
CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration	holes fa	stening Ø13	R _{2/3,d concrete}		
on concrete	type	ØxL	IN ⁽¹⁾		
		[mm]	[kN]		
	VIN-FIX PRO 5.8	M12 x 130	25,8		
• uncracked	VIN-FIX PRO 8.8	M12 x 180	41,3		
	SKR-E	12 x 110	17,4		
	AB1	M12 x 120	26,1		
	VIN-FIX PRO 5.8	M12 x 130	14,7		
. eventeed	VIN-FIX PRO 5.8/8.8	M12 x 180	20,8		
 cracked 	EPO-FIX PLUS 5.8	M12 x 130	25,8		
	AB1	M12 x 120	17,3		
• seismic	EPO-FIX PLUS 5.8	M12 x 180	10,8		
• 261211110	EPO-FIX PLUS 8.8	M12 x 180	12,4		

installation	anchor type			h _{ef}	h _{nom}	h ₁	d ₀	h _{min}	
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	
TCN200 + TCW200	VIN-FIX PRO	M12 x 130	15	99	99	105	14		
	EPO-FIX PLUS 5.8/8.8	M12 x 180	15	149	149	149	14	200	
	SKR-E	12 x 110	15	64	95	115	10	200	
	AB1	M12 x 120	15	70	80	85	12		

Precut INA threaded rod, with nut and washer: see page 520
MGS threaded rod class 8.8 to be cut to size: see page 534


t _{fix} h _{nom}
h _{ef}
h ₁
do
h _{min}

fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

NOTES:

 $^{(1)}\,$ Installation of the anchors in the two internal holes (IN).

TCN240 + TCW240

TIMBER STRENGTH

		TIMBER					CONCRETE					
configuration	ho	R _{2/3,k timber}	holes fast	ening Ø17	IN ⁽¹⁾							
on timber	type	ØxL	n _v	[1 A 1]	Ø	n _H	e _{y,IN}	e _{z,IN}				
		[mm]	[pcs]	[kN]	[mm]	[pcs]	[mm]	[mm]				
TCN240 + TCW240	LBA nails	Ø4,0 x 60	36	70,5	M16	2	39,5	83,5				
TCN240 + TCW240	LBS screws	Ø5,0 x 50	50	82,6								

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration	holes fa	stening Ø17	R _{2/3,d concrete}
on concrete	type	ØxL	IN ⁽¹⁾
		[mm]	[kN]
	VIN-FIX PRO 5.8	M16 X 190	49,5
• uncracked	VIN-FIX PRO 8.8	M16 X 190	61,6
	SKR-E	16 X 130	32,1
	AB1	M16 X 145	39,5
	VIN-FIX PRO 5.8/8.8	M16 X 190	30,9
• cracked	EPO-FIX PLUS 5.8/8.8	M16 X 160	40,1
• Crackeu	EPO-FIX PLUS 5.0/0.0	M16 X 190	49.1
	AB1	M16 X 145	28,4
	EPO-FIX PLUS 5.8	M16 X 190	15,2
• seismic	EPO-FIX PLUS 5.6	M16 X 230	16,6
• 201211110	EPO-FIX PLUS 8.8	M16 X 190	16,6
	LEO-FIX PLUS 0.0	M16 X 230	21,0

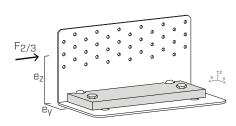
installation	anchor type			h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
		M16 x 160	15	126	126	135	18	200
	VIN-FIX PRO EPO-FIX PLUS 5.8/8.8	M16 x 190	15	155	155	155	18	200
TCN240 + TCW240	EI O TIXT 203 5.0/0.0	M16 x 230	15	195	195	195	18	240
	SKR-E	16 x 130	15	85	115	145	14	200
	AB1	M16 x 145	15	85	97	105	16	200

t _{fix}	fas
h _{nom}	nc
h _{ef}	ef
h ₁	mi
do	hc
h _{min}	CO

fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

MGS threaded rod class 8.8 to be cut to size: see page 534

Precut INA threaded rod, with nut and washer: see page 520


GENERAL PRINCIPLES:

TCW200 - TCW240 | VERIFICATION OF ANCHORS FOR CONCRETE FOR F_{2/3} STRESS

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (e).

The calculation eccentricities e_y and e_z refer to installation with WASHER TCW of 2 internal anchors (IN).

The anchor group must be verified for:

TCW200 - TCW240 | CONNECTION STIFFNESS FOR STRESS F_{2/3}

EVALUTATION OF SLIP MODULUS K_{2/3,ser}

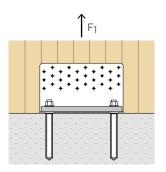
• K_{2/3,ser} experimental average value for TITAN joint on CLT (Cross Laminated Timber) according to ETA-11/0496

type	fastening type Ø x L [mm]	n _v [pcs]	К _{2/3,ser} [mm]
TCN200 + TCW200	LBS nails Ø5,0 x 50	30	9600
TCN240 + TCW240	LBS nails Ø5,0 x 50	36	10000

• K_{ser} according to EN 1995-1-1 for timber-to-timber joint screws* GL24h/C24

Screws (nails without pre-drilling hol	e) $\rho_m^{1.5} \cdot d^{0.8}$	(EN 1995 §7.1)
	30	

type	fastening type Ø x L [mm]	n _v [pcs]	K _{ser} [mm]
TCN200 + TCW200	LBS nails Ø5,0 x 50	30	31192
TCN240 + TCW240	LBS nails Ø5,0 x 50	36	37431


* For steel-to-timber connections the reference regulation indicates the possibility of doubling the value of K_{ser} listed in the table (7.1 (3)).

STATIC VALUES | TENSILE JOINT F1 | TIMBER-TO-CONCRETE

TCN200 + TCW200

TIMBER STRENGTH

	TIMBER			ST	STEEL CONCRETE				
configuration	uration holes fastening Ø5 R		R _{1,k timber}	R _{1,k steel}		holes fastening Ø13 IN ⁽¹⁾		IN ⁽¹⁾	
on timber	type	ØxL	n _v				Ø	n _H	k _{t//}
		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]	[mm]
TCN200 + TCW200	LBA nails	Ø4,0 x 60	30	57,9			M12	2	1,09
TCN200 + TCW200	LBS screws	Ø5,0 x 50	50	68,1	45,7 γ _{ΜΟ}				

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

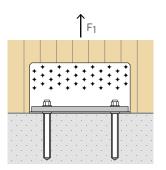
configuration	holes faster	R _{1,d concrete}	
on concrete	type	ØxL	IN ⁽¹⁾
		[mm]	[kN]
	VIN-FIX PRO 5.8/8.8	M12 x 180	22,1
• uncracked	EPO-FIX PLUS 5.8/8.8	M12 x 130	23,1
• uncracked	EPO-FIX PLUS 5.8	M12 x 180	25,4
	EPO-FIX PLUS 8.8	M12 x 180	37,6
	VIN-FIX PRO 5.8/8.8	M12 x 180	10,6
• cracked	EPO-FIX PLUS 5.8/8.8	M12 x 130	12,9
	LFO-FIX FL03 3.0/0.0	M12 x 180	19,7
• seismic	EPO-FIX PLUS 5.8/8.8	M12 x 180	8,1
	LEO-FIX ELUS 3.0/0.0	M12 x 230	10,9

installation	anchor type			h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
		M12 x 130	15	95	95	100	14	200
TCN200 + TCW200	VIN-FIX PRO EPO-FIX PLUS 5.8/8.8	M12 x 180	15	145	145	150	14	200
	21 0 11/1 203 5.0/0.0	M12 x 230	15	195	195	195	14	240

t _{fix}	fastened plate thickness
h _{nom}	nominal anchoring depth
h _{ef}	effective anchor depth
h ₁	minimum hole depth
d _o	hole diameter in the concrete support
h _{min}	concrete minimum thickness

Precut INA threaded rod, with nut and washer: see page 520

MGS threaded rod class 8.8 to be cut to size: see page 534


NOTES:

GENERAL PRINCIPLES:

 $^{\left(1\right) }$ Installation of the anchors in the two internal holes (IN).

STATIC VALUES | TENSILE JOINT F1 | TIMBER-TO-CONCRETE

TCN240 + TCW240

TIMBER STRENGTH

	TIMBER			ST	EL CONCRETE				
configuration	configuration holes fa		stening Ø5		R _{1,k steel}		holes fastening Ø17		IN ⁽¹⁾
on timber	type	ØxL	n _v				Ø	n _H	k _{t//}
		[mm]	[pcs]	[kN]	[kN]	Ysteel	[mm]	[pcs]	[mm]
TCN240 + TCW240	LBA nails	Ø4,0 x 60		69,5	69.0		M16	2	1,08
TCN240 + TCW240	LBS screws	Ø5,0 x 50	х 50 36 81,7 68,9 үмо	Үмо					

CONCRETE STRENGTH

Strength values of some of the possible fastening solutions on concrete for anchors installed in internal holes (IN) with WASHER.

configuration	holes fast	R _{1,d concrete}	
on concrete	type	IN ⁽¹⁾	
		[mm]	[kN]
	VIN-FIX PRO 5.8/8.8	M16 x 190	28,2
. uneracked	VIN-FIA PRO 3.0/0.0	M16 x 230	35,8
 uncracked 	EPO-FIX PLUS 5.8/8.8	M16 x 160	34,1
	EPU-FIX PLUS J.0/0.0	M16 x 190	41,4
	VIN-FIX PRO 5.8/8.8	M16 x 190	14,5
 cracked 	VIN-FIA PRO 3.0/0.0	M16 x 230	18,3
• Crackeu	EPO-FIX PLUS 5.8/8.8	M16 x 190	23,7
	EPU-FIX PLUS J.0/0.0	M16 x 230	30,0
• seismic	EPO-FIX PLUS 5.8/8.8	M16 x 190	10,4
• 201211110	LF U-FIA FLUS 3.0/0.0	M16 x 230	13,2

installation	anchor type		t _{fix}	h _{ef}	h _{nom}	h ₁	d ₀	h _{min}
	type	Ø x L [mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]
	VIN-FIX PRO	M16 x 160	15	126	126	126	18	200
TCN240 + TCW200	EPO-FIX PLUS	M16 x 190	15	155	155	155	18	200
	5.8/8.8	M16 x 230	15	195	195	195	18	240

fastened plate thickness nominal anchoring depth effective anchor depth minimum hole depth hole diameter in the concrete support concrete minimum thickness

Precut INA threaded rod, with nut and washer: see page 520

MGS threaded rod class 8.8 to be cut to size: see page 534

NOTES:

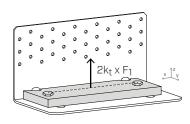
 $^{\left(1\right) }$ Installation of the anchors in the two internal holes (IN).

GENERAL PRINCIPLES:

For the general principles of calculation, see page 202.

t_{fix}

h_{nom} h_{ef} h₁ d₀


h_{min}

■ TCW200 - TCW240 | VERIFICATION OF ANCHORS FOR CONCRETE FOR F1 STRESS

Fastening elements to the concrete through anchors shall be verified according to the load acting on the anchor, which can be evaluated through the geometric parameters on the table (k_t) . 2 internal anchors (IN) must be provided for installation on concrete with WASHER TCW.

The anchor group must be verified for:

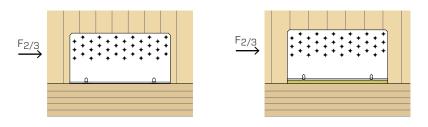
 $N_{Sd,z} = 2 \times k_{t/l} \times F_{1,d}$

TCW200 - TCW240 | CONNECTION STIFFNESS FOR STRESS F₁

EVALUTATION OF SLIP MODULUS K_{1,ser}

• K_{1,ser} experimental average value for TITAN joint on C24 CLT (Cross Laminated Timber) panels

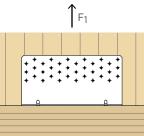
type	fastening type Ø x L [mm]	n _v [pcs]	K _{1,ser} [N/mm]
TCN200 + TCW200	-	-	-
TCN240 + TCW240	LBA nails Ø4,0 x 60	36	28455


• K_{ser} according to EN 1995-1-1 for timber-to-timber joint nails^{*} GL24h/C24

Nails (without pre-drilling hole)
$$\frac{\rho_m^{1.5} \cdot d^{0.8}}{30}$$
 (EN 1995 § 7.1)

type	fastening type	n _v	K _{ser}	
	Ø x L [mm]	[pcs]	[N/mm]	
TCN200 + (TCW200)	LBA nails Ø4,0 x 60	30	26093	
TCN240 (+ TCW240)	LBA nails Ø4,0 x 60	36	31311	

* For steel-to-timber connections the reference standard indicates the possibility of doubling the value of K_{ser} listed in the table (7.1 (3))


STATIC VALUES | SHEAR JOINT F_{2/3} | TIMBER-TO-TIMBER TTN240

TIMBER

	TIMBER					
configuration		holes fast	profile ⁽²⁾	R _{2/3,k timber}		
on timber ⁽¹⁾	type	ØxL	n _v	n _H	S	
		[mm]	[pcs]	[pcs]	[mm]	[kN]
TTN240	LBA nails	Ø4,0 x 60	36	36	-	37,9
	LBS screws	Ø5,0 x 50				46,7
TTN240 + XYLOFON	LBA nails	Ø4,0 x 60	36	36	6	24,8
TTN240 + XTLOFON	LBS screws	Ø5,0 x 50				22,8
TTN240 + ALADIN STRIPE SOFT	LBA nails	Ø4,0 x 60	36	36	5	28,9
TTN240 + ALADIN STRIPE SOFT	LBS screws	Ø5,0 x 50				27,5
TTN240 + ALADIN STRIPE EXTRA SOFT	LBA nails	Ø4,0 x 60	36	36	7	27,5
TIN240 + ALADIN STRIPE EXTRA SOFT	LBS screws	Ø5,0 x 50				25,8

STATIC VALUES | TENSILE JOINT F1 | TIMBER-TO-TIMBER TTN240

	TIMBER					
		R _{1,k timber}				
	type	Ø x L [mm]	n _v [pcs]	n _H [pcs]	[kN]	
			[663]	[663]		
TTN240	LBA nails	Ø4,0 x 60	36	36	7,4	
TINETO	LBS screws	Ø5,0 x 50	50		16,2	

NOTES:

- ⁽¹⁾ The TTN240 angle bracket can be installed in combination with different resilient acoustic profiles inserted below the horizontal flange in full pattern configuration. The strength values in the table are given in ETA-11/0496 and calculated according to *'BlaB, H.J. und Laskewitz, B. (2000); Load-Carrying Capacity of Joints with Dowel-Type fasteners and Interlayers.*", conservatively disregarding the stiffness of the profile.
- (2) Profile thickness: in the case of ALADIN profile, the calculation took into account the reduced thickness, due to the corrugated section and the consequent crushing induced by the nail head during insertion.

STATIC VALUES | SHEAR JOINT F₄ - F₅ - F_{4/5} |TIMBER-TO-TIMBER TTN240

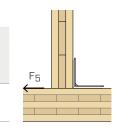
TIMBER				STEEL					
		holes fastening Ø5			R _{4,k timber}	R _{4,k steel}			
	F ₄		type	Ø x L [mm]	n _v [pcs]	[kN]	[kN]	Ysteel	F4
	TTN240	• full pattern	LBA nails	Ø4,0 x 60	36 + 36	23,8	31,1	Nuc	\rightarrow
11112-10	11112-10		LBS screws	Ø5,0 x 50	50150	23,0	51,1	Үмо	

TIMBER

holes fastening Ø5

ØxL

[mm]

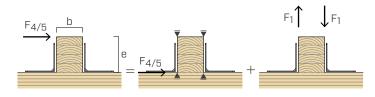

Ø4.0 x 60

Ø5,0 x 50

type

LBA nails

LBS screws


		TIMBER				STE	EEL	
F _{4/5} TWO ANGLE BRACKETS		holes fastening Ø5			R _{4/5,k timber}	R _{4/5,k steel}		
		type	ØxL	n _v				
			[mm]	[pcs]	[kN]	[kN]	Ysteel	F _{4/5}
TTN240	• full pattern	LBA nails Ø4,0 x 60	Ø4,0 x 60	72 . 72	26.7	71 6		
TTN240		LBS screws	Ø5,0 x 50	72 + 72	26,7	31,6	Үмо	

 n_{ν}

[pcs]

36 + 36

The F₄, F₅, F_{4/5} values in the table are valid for the acting stress calculation eccentricity e=0 (timber elements prevented from rotating). For joints with 2 angle brackets, in case the stress F_{4/5,d} is applied with eccentricity e≠0, the verification for combined loads is required considering the contribution of the additional tensile component:

STEEL R_{5,k steel}

Ysteel

Υмо

[kN]

3,4

R_{5,k timber}

[kN]

7,3

 $\Delta F_{1,d} = F_{4/5,d} \cdot \frac{e}{b}$

 F_5

TTN240

• full pattern

GENERAL PRINCIPLES:

GENERAL PRINCIPLES:

 Characteristic values are consistent with EN 1995-1-1 and in accordance with ETA-11/0496. The design values of the anchors for concrete are calculated in accordance with the respective European Technical Assessments (see Chapter 6 ANCORS FOR CONCRETE). The connection design strength values are obtained from the values on the table as follows:

$$R_{d} = min \begin{cases} \frac{R_{k, timber} \cdot K_{mod}}{\gamma_{M}} \\ \frac{R_{k, steel}}{\gamma_{steel}} \\ R_{d, concrete} \end{cases}$$

The coefficients k_{mod}, γ_M and γ_{steel} should be taken according to the current regulations used for the calculation.

- Dimensioning and verification of timber and concrete elements must be carried out separately. Verify that there are no brittle fractures before reaching the connection strength.
- Structural elements in timber, to which the connection devices are fastened, must be prevented from rotating.
- For the calculation process a timber density ρ_k = 350 kg/m³ has been considered. For higher $_k$ values, the strength on timber side can be converted by the k_{dens} value:

$$k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5} \text{ for } 350 \text{ kg/m}^3 \leq \rho_k \leq 420 \text{ kg/m}^3$$
$$k_{dens} = \left(\frac{\rho_k}{350}\right)^{0.5} \text{ for LVL with } \rho_k \leq 500 \text{ kg/m}^3$$

- In the calculation phase, a strength class of C25/30 concrete with thin reinforcement was considered, in the absence of spacing and distances from the edge and minimum thickness indicated in the tables listing the installation parameters of the anchors used. The strength values are valid for the calculation hypotheses defined in the table; for boundary conditions different from the ones in the table (e.g. minimum distances from the edge or different concrete thickness), the concrete-side anchors can be verified using MyProject calculation software according to the design requirements.
- Seismic design in performance category C2, without ductility requirements on anchors (option a2) elastic design according to EOTA TR045. For chemical anchors subjected to shear stress it is assumed that the annular space between the anchor and the plate hole is filled (α_{gap} =1).