HTZ

CE

HOLD DOWN FOR HIGH TENSILE FORCES

- Hold-down with high tensile strength, for CLT or frame buildings
- Available in 4 sizes to be combined with 3 washers to meet all static performance requirements
- Large rod bore allows for optimum use of concrete fastening

CODE		H [mm]	Ø [mm]	s [mm]	n _V Ø5	pcs	
HTZ340	1	340	17	3	20	10	
HTZ440	2	440	17	3	30	10	

WASHER FOR HTZ340 AND HTZ440 ANGLE BRACKET

CODE	Ø	s	HTZ340	HTZ440	pcs
	[mm]	[mm]			
HTZULS10	18	10	•	•	10

CODE		Н	Ø	s	n _V Ø5	pcs
		[mm]	[mm]	[mm]		
WHT540	3	540	22	3	45	10
WHT620	4	620	26	3	55	10

WASHER FOR WHT540 AND WHT620 ANGLE BRACKET

CODE	Ø [mm]	s [mm]	WHT540	WHT620	pcs
WHTW50L	22	10	•	-	1
WHTW70L	26	20	-	•	1

STRUCTURAL VALUES

TENSILE JOINT | TIMBER-TO-CONCRETE

	R _{1,k} TIMBER			R _{1,k} STEEL		R _{1,d} UNCRACKED CONCRETE		
	holes fastening Ø5		R _{1,k timber}	R _{1,k steel}		V-NEX	R _{1,d concrete}	h _{min,concrete}
CODE	Ø x L [mm]	n _v [pcs]	[kN]	[kN]	γ_{steel}	Ø x L [mm]	[kN]	[mm]
HTZ340		20	38,6	42,0	Υмо	M16 x 160 - cl. 5.8	30,7	200
HTZ440 + HTZULS10	Anker nails LBA Ø4 x 60 LBS screws Ø5 x 50	30	57,9	63,4	Y _{M2}	M16 x 195 - cl. 5.8	36,5	200
WHT540 + WHTW50L		45	86,9	63,4	Y _{M2}	M20 x 245 - cl. 5.8	58,0	240
WHT620 + WHTW70L		55	106,2	85,2	Y _{M2}	M24 x 330 - cl. 5.8	97,5	320

GENERAL PRINCIPLES

- Characteristic values are consistent with EN 1995-1-1 and in accordance with ETA-11/0086. The design values of the anchors for concrete are calculated in accordance with the respective European Technical Assessments.
- The connection design strength value is obtained from the values on the table as follows:

$$R_{d} = min \begin{cases} \frac{R_{k,timber} \cdot k_{mod}}{Y_{M}} \\ \frac{R_{k,steel}}{Y_{steel}} \\ R_{d} = min \end{cases}$$

- The coefficients k_{mod} , γ_{M} and γ_{steel} should be taken according to the current regulations used for the calculation. The calculation process used a timber characteristic density of $\rho_{k} = 350 \text{ kg/m}^3$ and a C25/30 concrete strength class with a thin reinforcing layer, where there is no edge-distance and minimum thickness indicated in the tables.
- Dimensioning and verification of timber and concrete elements must be carried out separately.
- For applications on CLT (Cross Laminated Timber) it is recommended to use nails/screws of adequate length to ensure that the fixing depth involves a sufficient timber thickness to prevent fragile failure for group effects.

 The strength values of the connection system are valid under the calculation hypotheses listed in the table.

 Chemical anchor V-NEX according to ETA-20/0363 with threaded rods (type INA) in minimum steel class 5.8.