CPB/CPS

Die CPB und CPS Stützenfüße sind zur Aufnahme von vertikalen und horizontalen Lasten ausgelegt. Der Anschluss an die Stütze erfolgt in eine Ø40 mm Bohrung, vorrangig mit Abbundanlagen gebohrt. Bei konventionellem Abbund empfehlen wir unsere Bohrschablone BTBS40.

Die CPB Stützenfüße werden mittels eines 36 mm Gabelschlüssels, der CPS mit einem ¾ Zoll Vierkant eingedreht. Die Köpfe dürfen nur einmal eingeschraubt werden, ein Ausdrehen und erneutes Eindrehen ist nicht zulässig.

Tabelle 1

Art.No.	Art.No.	Maße [mm]					
NEU	ALT	Α	В	С	D	E	F
CPB40	CPB40	105	40	120	190-250	160	90
CPS40	CPS40	105	40	120	450	70	70
BH54	Blendhülse						
BTBS40	Bohrschablone						

Tabelle 2

Copyright: © Simpson Strong-Tie® - C-DE-2012/13

Lastein- wirkungs- richtung	Holzab- messung b	CPS Charakteristische Werte der Tragfähigkeit [kN] min. von 1)		
	[mm]	Holz	Stahl	
F ₁		170,3	118,7	
F_2		23,7		
F ₁ **	b≥ 120	110,7		
F ₂ **		13,8		
H_1 H_2		7,2	5,2	

Tabelle 3

Lastein- wirkungs- richtung	Holzab- messung b	CPB Charakteristische Werte der Tragfähigkeit [kN] min. von ¹⁾		
	[mm]	Holz	Stahl	
F ₁			61,0	
F_2	≥ 120	23,7		
F ₂ **		13,8		
	h =			
H, H _o	190		1,7	
H ₁ H ₂	250		1,4	

^{**} wenn Druck UND Zugkräfte auftreten

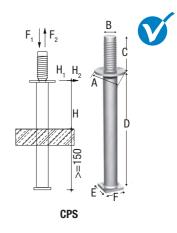
Kombinierte Beanspruchung

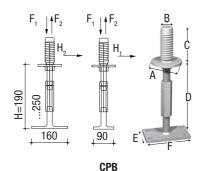
$$\sum \frac{F_{i,d}}{R_{i,d}} \leq 1$$

Beispiel: CPS

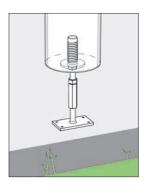
Holzstütze im Querschnitt 120 x 120 mm

$$F_{1,d} = 26 \text{ kN} \quad F_{2,d} = 3,2 \text{ kN}$$


$$H_{2,d} = 1,6 \text{ kN}$$


Einbau im Außenbereich, NKL 3, KLED: Mittel \Rightarrow $k_{mod} = 0.65$

 $R_{1.d} = 110,7 \times 0,65 / 1,3 = 55,4 \text{ kN}$


 $R_{H2,d} = min. \text{ von } 7.2 \text{ x } 0.65 \text{ / } 1.3 = 3.6 \text{ kN oder } 5.2 \text{ / } 1.3 = 4.0 \text{ [nicht maßgebend]}$

Nachweis: $\frac{26.0}{55.4} + \frac{1.6}{3.6} = 0.91 \le 1$

