

Centre Scientifique et

Technique du Bâtiment

84 avenue Jean Jaurès CHAMPS-SUR-MARNE F-77447 Marne-la-Vallée Cedex 2

Tél. : (33) 01 64 68 82 82 Fax : (33) 01 60 05 70 37

European Technical Assessment

ETA-01/0011 of 06/07/2015

English translation prepared by CSTB - Original version in French language

General Part

Nom commercial Sormat Liebig Superplus[™] self-undercutting anchor Trade name Famille de produit Cheville métallique autoverrouillante en acier galvanisé ou Product family inoxydable, à expansion par vissage à couple contrôlé, de fixation dans le béton: diamètres M8, M12 et M16. Torque-controlled self undercutting anchor, made of galvanised or stainless steel, for use in concrete: sizes M8, M12 and M16. Titulaire SORMAT OY Manufacturer Harjutie 5 FIN-21290 Rusko Finland Usine de fabrication Sormat Plant 1 Manufacturing plants 24 pages incluant 21 annexes qui font partie intégrante de Cette evaluation contient: cette évaluation This Assessment contains 24 pages including 21 annexes which form an integral part of this assessment Base de l'ETE ETAG 001, Version April 2013, utilisée en tant que EAD Basis of ETA ETAG 001, Edition April 2013 used as EAD Cette evaluation remplace: ATE 01/0011, ATE 05/0013 valides 15/04/2013 - 15/04/2018 ETA-01/0011, ETA-05/0013 with validity 15/04/2013 - 15/04/2018 This Assessment replaces

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

Specific Part

1 Technical description of the product

The Sormat Liebig Superplus[™] self-undercutting anchor in the sizes of M8, M12 and M16 is an anchor made of galvanised or stainless steel, which is placed into a drilled hole and anchored by torque controlled expansion.

The illustration and the description of the product are given in Annexes A.

2 Specification of the intended use

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annexes B.

The provisions made in this European technical assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 **Performance of the product**

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic tension resistance acc. ETAG001, Annex C	See Annexes C1, C2
Characteristic shear resistance acc. ETAG001, Annex C	See Annexes C3, C4
Characteristic tension resistance acc. CEN/TS 1992-4	See Annexes C8, C9
Characteristic shear resistance acc. CEN/TS 1992-4	See Annexes C10, C11
Displacements	See Annex C15, C16

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Characteristic tension resistance under fire acc. ETAG001, Annex C	See Annex C5, C6
Characteristic shear resistance under fire acc. ETAG001, Annex C	See Annex C7
Characteristic tension resistance under fire acc. CEN/TS 1992-4	See Annex C12, C13
Characteristic shear resistance under fire acc. CEN/TS 1992-4	See Annex C14

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances contained in this European technical approval, there may be requirements applicable to the products falling within its scope (e.g. transposed European legislation and national laws, regulations and administrative provisions). In order to meet the provisions of the Construction Products Directive, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

For Basic requirement Safety in use the same criteria are valid as for Basic Requirement Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

Not relevant.

3.6 Energy economy and heat retention (BWR 6)

Not relevant.

3.7 Sustainable use of natural resources (BWR 7)

For the sustainable use of natural resources no performance was determined for this product.

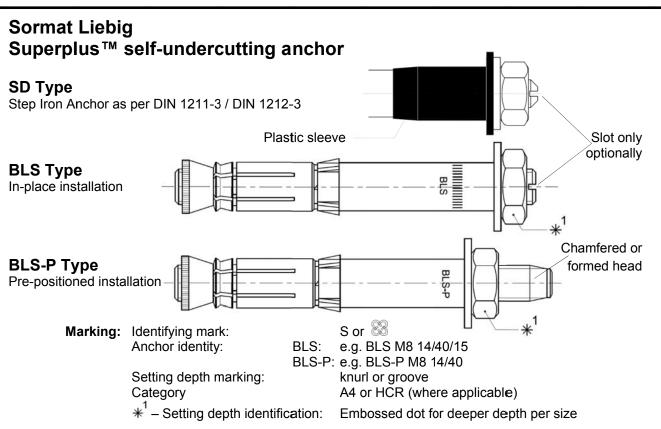
3.8 General aspects relating to fitness for use

Durability and Serviceability are only ensured if the specifications of intended use according to Annex B1 are kept.

4 Assessment and verification of constancy of performance (AVCP)

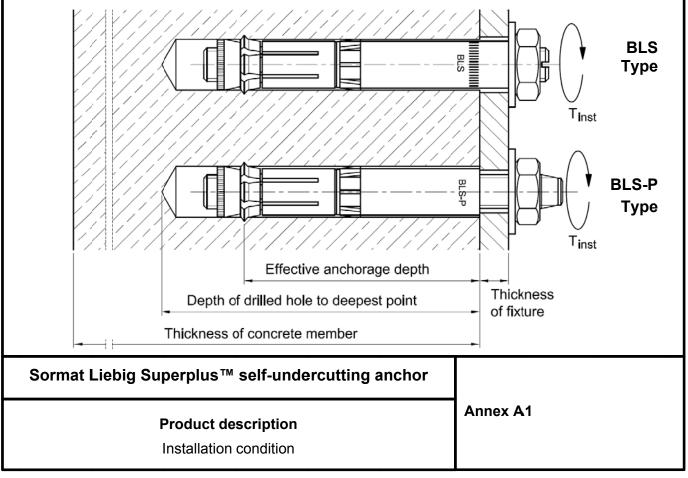
According to the Decision 96/582/EC of the European Commission¹, as amended, the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

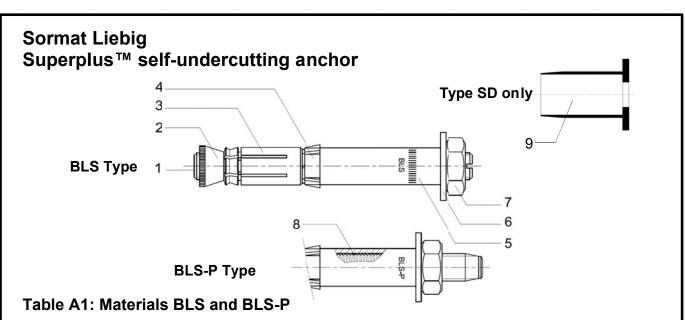
Product	Intended use	Level or Class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	_	1


5 Technical details necessary for the implementation of the AVCP system

Technical details necessary for the implementation of the Assessment and verification of constancy of performance (AVCP) system are laid down in the control plan deposited at Centre Scientifique et Technique du Bâtiment.

The manufacturer shall, on the basis of a contract, involve a notified body approved in the field of anchors for issuing the certificate of conformity CE based on the control plan.


Issued in Marne La Vallée on 06-07-2015 by Charles Baloche Directeur technique


The original French version is signed

NOTE: The SD type corresponds to the BLS A4 type with plastic sleeve surrounding the distance sleeve.

Sormat Liebig Superplus™ self-undercutting anchor after installation

Part	Designation	Material: Zinc electroplated ¹⁾
1	Threaded bolt	EN ISO 898-1; property class 8.8
2	Cone	Carbon steel
3	Anchor sleeve	Carbon steel
4	Plastic ring	PE
5	Distance sleeve	Carbon steel; $f_u \ge 500 \text{ N/mm}^2$
6	Washer	Carbon steel EN 10139
7	Hexagonal nut	EN ISO 898-2; property class 8
8	Grip (only BLS-P)	Drop of glue, tape or rubber O-Ring

¹⁾ Coating: Parts 1 - 3 and 5 - 7 zinc electroplated according EN ISO 4042 \geq 5µm, passivated.

Table A2: Materials BLS A4/HCR, BLS-P A4/HCR and SD

Part	Designation	Material: Stainless steel A4/HCR
1	Threaded bolt	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529; EN ISO 3506-1: A4-80
2	Cone	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529
3	Anchor sleeve	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529
4	Plastic ring	PE
5	Distance sleeve	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529; f _u ≥ 500 N/mm²
6	Washer	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529
7	Hexagonal nut	EN 10088: 1.4401 / 1.4404 / 1.4571 / 1.4529; EN ISO 3506-2: A4-80
8	Grip (only BLS-P)	Drop of glue, tape or rubber O-Ring
9	Plastic sleeve	PA; DIN EN ISO 1874-1

Sormat Liebig Superplus™ self-undercutting anchor	
Product description Materials	Annex A2

Specifications of intended use

Anchorages subject to:

• Static, quasi-static and loads under fire

Base materials:

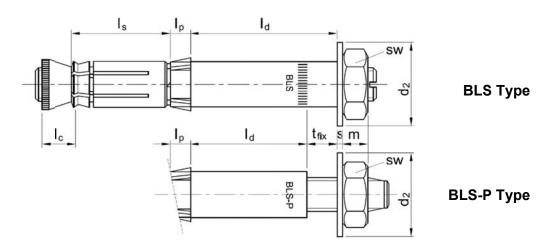
- Cracked and Non-cracked concrete
- Reinforced or unreinforced normal weight concrete of strength classes C 20/25 at least to C50/60 at most according to EN 206: 2000-12

Use conditions (Environmental conditions):

- The BLS and BLS-P anchors may only be used in structures subject to dry indoor conditions, indoor with temporary condensation.
- The BLS A4 and BLS-P A4 may be used in concrete subject to dry internal conditions and also in concrete subject to external atmospheric exposure (including industrial and marine environment), or exposure in permanently damp internal conditions, if no particular aggressive conditions exist.
- The BLS HCR and BLS-P HCR may be used in concrete subject to dry internal conditions and also in concrete subject to external atmospheric exposure, in permanently damp internal conditions or in other particular aggressive conditions.

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:


- The anchorages are designed in accordance with the ETAG001 Annex C "Design Method for Anchorages" or CEN/TS 1992-4-4 "Design of fastenings for use in concrete" under the responsibility of an engineer experienced in anchorages and concrete work.
- For application with resistance under fire exposure the anchorages are designed in accordance with method given in TR020 "Evaluation of Anchorage in Concrete concerning Resistance to Fire".
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.

Installation:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the
 person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Anchor installation in accordance with the manufacturer's specifications and drawings and using the appropriate tools.
- Effective anchorage depth, edge distances and spacing not less than the specified values without minus tolerances.
- Hole drilling by hammer drill.
- Cleaning of the hole of drilling dust
- BLS version installed through fixture using an ordinary hammer and tightened to specified torque.
- BLS-P version installed into drill-hole using an ordinary hammer. Then, nut and washer are removed, fixture installed, washer and nut installed, and tightened to specified torque.
- Application of specified torque moment using a calibrated torque tool
- In case of aborted hole, drilling of new hole at a minimum distance of twice the depth of the aborted hole, or smaller distance provided the aborted drill hole is filled with high strength mortar and no shear or oblique tension loads in the direction of aborted hole.

Sormat Liebig Superplus™ self-undercutting anchor	
Intended Use Specifications	Annex B1

Sormat Liebig Superplus™ self-undercutting anchor

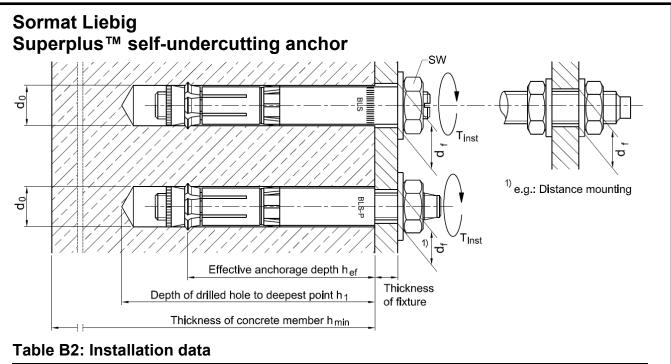


Table B1: Anchor dimensions

Main dimensions		Cone	Anchor sleeve	Plastic ring	Distance sleeve	Washer		r	Hexagonal nut	
Anchor type	t_{fix} [mm]	l _c [mm]	l_s [mm]	Ι _p [mm]	l _d [mm]	≥ S [mm]	≥ d ₂ [mm]	d₁ [mm]	≥ m [mm]	≥ SW [mm]
BLS M8 - 14/40 (A4/HCR)	0 -	11.8	26	6.0	9-109	1.5	20	8.4	6.5	13
BLS-P M8 - 14/40 (A4/HCR)	100	11.0	20	0.0	9	1.5	20	0.4	0.5	15
BLS M8 - 14/80 (A4/HCR)	0 -	11 0	26	6.0	49-199	1.5	20	8.4	6.5	13
BLS-P M8 - 14/80 (A4/HCR)	150	11.8	26		49		20	0.4		15
BLS M12 - 20/80 (A4/HCR)	0 -	16.5	40	11.5	30-230	3.5	30	13.0	10.0	18
BLS-P M12 - 20/80 (A4/HCR)	200				30					10
BLS M12 - 20/150 (A4/HCR)	0 -	16 5	5 40	11.5	100-350	25	30	13.0	10.0	18
BLS-P M12 - 20/150 (A4/HCR)	250	16.5			100	3.5	30			10
BLS M16 - 25/150 (A4/HCR)	0 -	17.0	60	11 5	80-330	4.0	40	17.0	12.0	24
BLS-P M16 - 25/150 (A4/HCR)	250	17.8	60	11.5	80	4.0	40	17.0	13.0	24
BLS M16 - 25/200 (A4/HCR)	0 -	17 0	60	11.5	130-430	4.0	40	17.0	13.0	24
BLS-P M16 - 25/200 (A4/HCR)	300	17.8	60		130	4.0	40			24

Sormat Liebig Superplus™ self-undercutting anchor

Intended Use Anchor dimensions Annexe B2

						Anchor type							
BIG	s линс	BLS / BLS-P / CR / BLS-P A4/H(h	M8	- 14	M12	- 20	M16 - 25				
	5 44/110			,	/40/	/80/	/80/	/150/	/150/	/200/			
Drill hole	diameter		d _o	[mm]	1	4	2	0	2	25			
		t the upper ximum diameter bit)	d _{cut,max} ≤	[mm]	14	.50	20.	55	25.55				
Depth of	drilled ho	le to deepest point	h₁≥	[mm]	60	100	105	175	185	235			
Effective	anchorag	je depth	h _{ef} ≥	[mm]	40	80	80	150	150	200			
	Diameter of clearance hole in the fixture In-place installation (BLS) Mounting on the threaded bolt ¹⁾ (BLS-P / dist. mounting)		d _f ≤	[mm]	16		21		26				
			d _f ≤	[mm]	10		14		18				
Thicknes	s of fixtur	е	t _{fix}	[mm]	0-100	0-150	0-200	0-250	0-250	0-300			
Width ac	ross flats		SW	[mm]	≥ 13		≥ 18		≥ 24				
Torque m	noment		T _{inst}	[Nm]	2	5	80		180				
Minimum member	thicknes	s of concrete	h _{min}	[mm]	100	160	160	300	300	400			
BLS /	Minimur	n allowable spacing	S _{min}	[mm]	100	80	120	150	200	150			
BLS-P	Minimur	n allowable edge dist.	C _{min}	[mm]	80	50	100	80	150	100			
BLS / BLS-P	Minimur	n allowable spacing	S _{min}	[mm]	80	80	150	150	150	180			
A4 / HCR	Minimur	n allowable edge dist.	C _{min}	[mm]	60	50	100	80	100	100			

Sormat Liebig Superplus™ self-undercutting anchor

Intended Use Installation data Annexe B3

Table C1: Characteristic values for tension loads in case of static and quasi static loading for design method A acc. ETAG 001, Annex C, BLS and BLS-P

			Anchor type							
BLS / BLS	·P		M8	- 14	M1:	2 - 20	M16 - 25			
			/40/	/80/	/80/	/150/	/150/	/200/		
Steel failure										
Characteristic resistance	N _{Rk,s}	[kN]	29	9,3	6	7,4	12:	5,6		
Partial safety factor	γ _{Ms} 1)	[-]				1,5				
Pull-out failure										
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	9	16	25	40	50	75		
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]		n	ot decis	ive failure	mode			
		C30/37	1,22							
Increasing factor for $N_{Rk,p}$	Ψc	C40/50	1,41							
		C50/60				1,55				
Partial safety factor	γ _{Mp} ¹⁾	[-]	1,5 ²⁾							
Concrete cone failure and spl		ıre								
Characteristic resistance in cracked concrete C20/25	N ⁰ _{Rk,c} ²⁾	[kN]	9,1	25,8	25,8	66,1	66,1	101,8		
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,c} ²⁾	[kN]	12,8	36,1	36,1	92,6	92,6	142,5		
		C30/37		1,22						
Increasing factor for $N^0_{Rk,c}$	Ψc	C40/50				1,41				
		C50/60				1,55				
Effective anchorage depth	h _{ef}	[mm]	40	80	80	150	150	200		
Center Spacing	S _{cr,N}	[mm]	120	240	240	450	450	600		
Edge distance	C _{cr,N}	[mm]	60	120	120	225	225	300		
Center Spacing (splitting)	S _{cr,sp}	[mm]	140	360	360	540	560	560		
Edge distance (splitting)	C _{cr,sp}	[mm]	70	180	180	270	280	280		
Partial safety factor γ_N	lc=γ _{Msp} ¹⁾	[-]				1,5 ²⁾				

¹⁾ In absence of other national regulations

 $^{2)}$ The installation safety factor of γ_2 = 1,0 is included.

³⁾ Characteristic resistance values for the evaluation of one single anchor without influence of spacings (s ≥ s_{cr,N}) or edge distances (c ≥ c_{cr,N}). For evaluation of groups of anchors (s < s_{cr,N}) or anchors close to edges (c < c_{cr,N}), equation (5.2) of ETAG 001, part C has to be taken into account.

Sormat Liebig Superplus™ self-undercutting anchor	
Design according to ETAG 001, Annex C Characteristic resistance under tension loads	Annexe C1

able C2: Characteristic values for tension loads in case of static and quasi static loading for design method A acc. <u>ETAG 001, Annex C</u> , BLS A4/HCR, BLS-P A4/HCR and SD									
				Anchor type					
BLS A4/HCR / BLS-P	A4/HCR	/ SD	M8	- 14	M1:	2 - 20	M16	- 25	
			/40/	/80/	/80/	/150/	/150/	/200/	
Steel failure			•		•		2	•	
Characteristic resistance	N _{Rk,s}	[kN]	29),3	6	7,4	125	5,6	
Partial safety factor	γ _{Ms} 1)	[-]				1,6			
Pull-out failure									
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	9	12	25	40	60	60	
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]		n	ot decis	ve failure	mode		
		C30/37	1,22						
ncreasing factor for $N_{Rk,p}$	Ψ _C	C40/50	1,41						
		C50/60	1,55						
Partial safety factor	γ _{Mp} ¹⁾	[-]				1,5 ²⁾			
Concrete cone failure and spli	tting failu	ıre							
Characteristic resistance in cracked concrete C20/25	N ^{0 3)} Rk,c	[kN]	9,1	25,8	25,8	66,1	66,1	101,8	
Characteristic resistance in non-cracked concrete C20/25	N ⁰ _{Rk,c} ³⁾	[kN]	12,8	36,1	36,1	92,6	92,6	142,	
		C30/37				1,22	1		
Increasing factor for $N^0_{Rk,c}$	Ψ_{C}	C40/50				1,41			
		C50/60				1,55			
Effective anchorage depth	h _{ef}	[mm]	40	80	80	150	150	200	
Center Spacing	S _{cr,N}	[mm]	120	240	240	450	450	600	
Edge distance	C _{cr,N}	[mm]	60	120	120	225	225	300	
Center Spacing (splitting)	S _{cr,sp}	[mm]	140	360	360	540	560	560	
Edge distance (splitting)	C _{cr,sp}	[mm]	70	180	180	270	280	280	
Partial safety factor γ_M	c=γ _{Msp} ¹⁾	[-]				1,5 ²⁾			

¹⁾ In absence of other national regulations

²⁾ The installation safety factor of γ_2 = 1,0 is included.

³⁾ Characteristic resistance values for the evaluation of one single anchor without influence of spacings (s $\ge s_{cr,N}$) or edge distances (c $\ge c_{cr,N}$). For evaluation of groups of anchors (s < s_{cr,N}) or anchors close to edges (c < c_{cr,N}), equation (5.2) of ETAG 001, part C has to be taken into account.

Sormat Liebig Superplus™ self-undercutting anchor	
Design according to <u>ETAG 001, Annex C</u> Characteristic resistance under tension loads	Annexe C2

Table C3: Characteristic values for shear loads in case of static and quasi static loading
for design method A acc. ETAG 001, Annex C, BLS and BLS-P

						Ancl	nor type		
	BLS / BLS-P			M8	- 14	M12	2 - 20	M16	- 25
				/40/	/80/	/80/	/150/	/150/	/200/
Steel fa	ailure without lever arm							-	
BLS	Characteristic resistance for In-place installation	V _{Rk,s}	[kN]	41,4 70,0 118,				8,0	
	Partial safety factor	γ _{Ms} ¹⁾	[-]				1,25		
BLS-P	Characteristic resistance for Pre-positioned installation	V _{Rk,s}	[kN]	14	,6	3:	3,7	62	2,8
	Partial safety factor	γ _{Ms} ¹⁾	[-]				1,25		
Steel fa	ailure with lever arm								
Charact	teristic bending resistance	M ⁰ _{Rk,s}	[Nm] 30 105		266				
Partial s	safety factor	γ _{Ms} ¹⁾	[-] 1,25						
Concre	ete pryout failure								
Factor in equation (5.6) of ETAG Annex C, § 5.2.3.3		k	[-]	1 2 2		2	2		
Partial s	safety factor	γ _{Mc} ¹⁾	[-]			1	,5 ²⁾	1	
Concre	ete edge failure		1						
Effectiv load	e length of anchor under shear	$\ell_{\rm f}$	[mm]	40	80	80	150	150	200
Outside	e diameter of anchor	d _{nom}	n [mm] 14 20 2		2	5			
Cracke reinforc	d concrete without any edge ement			1,00					
Cracked concrete with straight edge reinforcement > Ø12 mm		Ψ _{ucr,V}	[-]				1,20		
and clos	d concrete with edge reinforcement sely spaced stirrups (a≤100mm) or acked concrete			1,40					
Partial s	safety factor	γ _{Mc} ¹⁾	[-]] 1,5 ²⁾					

²⁾ The installation safety factor of γ_2 = 1,0 is included.

Sormat Liebig Superplus™ self-undercutting anchor	
Design according to <u>ETAG 001, Annex C</u> Characteristic resistance under shear loads	Annex C3

					Anchor type						
BL	S A4/HCR / BLS-P A4/HC	r / Si)	M8	- 14	M12	2 - 20	M16	- 25		
				/40/	/80/	/80/	/150/	/150/	/200/		
Steel fail	ure without lever arm										
BLS	Characteristic resistance for In-place installation	V _{Rk,s}	[kN]	:N] 44,6 90,3 1		169	9,8				
	Partial safety factor	γ _{Ms} ¹⁾	[-]				1,33				
BLS-P	Characteristic resistance for Pre-positioned installation	V _{Rk,s}	[kN]	14	l,6	3	3,7	62	.,8		
	Partial safety factor	γ _{Ms} ¹⁾	[-]				1,33				
Steel fail	ure with lever arm	•									
Characte	ristic bending resistance	M ⁰ _{RK,s} [Nm] 30 105				266					
Partial sa	I safety factor γ _{Ms} ¹⁾ [-] 1,33										
Concrete	e pryout failure										
Factor in C, § 5.2.3	equation(5.6)of ETAG Annex 3.3	k	[-]	1	2 2 2		2				
Partial sa	fety factor	γ _{Mc} ¹⁾	[-]		1	·	1,5 ²⁾				
Concrete	edge failure										
Effective load	length of anchor under shear	ℓ _f	[mm]	40	80	80	150	150	200		
Outside d	liameter of anchor	d _{nom}	[mm]	1	4	2	20	2	5		
Cracked reinforcer	concrete without any edge ment						1,00				
Cracked concrete with straight edge reinforcement > Ø12 mm		$\Psi_{ucr,V}$	[-]	1,20			1,20				
and close	concrete with edge reinforcement ly spaced stirrups (a≤100mm) or ked concrete			1,40							
Partial sa	fety factor	γ _{Mc} ¹⁾	[-]	-] 1,5 ²⁾							
	nce of other national regulations tallation safety factor of $\gamma_2 = 1,0$ is	include	d.								

Sormat Liebig Superplus™ self-undercutting anchor	
Design according to <u>ETAG 001, Annex C</u> Characteristic resistance under shear loads	Annex C4

BLS / BLS	Anchor size (h _{ef,min})						
BLS A4/HCR / BLS-		/ SD		M8 - 14/40	M12 - 20/80	M16 - 25/150	
Steel failure				Į	ļ	<u></u>	
		R30	[kN]	0,37	1,70	3,10	
	BLS /	R60	[kN]	0,33	1,30	2,30	
	BLS-P	R90	[kN]	0,26	1,10	0,84	
Characteristic resistance N		R120	[kN]	0,18	0,84	1,60	
Characteristic resistance $N_{Rk,s,fi}$		R30	[kN]	0,73	2,5	4,7	
	BLS / BLS-P	R60	[kN]	0,59	2,1	3,9	
	A4/HCR	R90	[kN]	0,44	1,7	3,1	
	/////	R120	[kN]	0,37	1,3	2,5	
Pull-out failure							
		R30	[kN]	2,3	6,3	12,5	
	BLS /	R60	[kN]	2,3	6,3	12,5	
	BLS-P	R90	[kN]	2,3	6,3	12,5	
		R120	[kN]	1,8	5,0	10,0	
Characteristic resistance $N_{\text{Rk},\text{p},\text{fi}}$		R30	[kN]	2,3	6,3	15,0	
	BLS /	R60	[kN]	2,3	6,3	15,0	
	BLS-P A4/HCR	R90	[kN]	2,3	6,3	15,0	
		R120	[kN]	1,8	5,0	12,0	
Concrete cone and splitting failu	ire ¹⁾				•		
		R30	[kN]	1.8	10,3	49,6	
Obarratariatia na sistema a N		R60	[kN]	1.8	10,3	49,6	
Characteristic resistance $N_{\text{Rk},\text{c},\text{fi}}$		R90	[kN]	1.8	10,3	49,6	
		R120	[kN]	1.5	8,2	39,7	
2		S _{cr,N,fi}	[mm]		4 x h _{ef}		
Spacing		S _{min}	[mm]	80	150	150	
		C _{cr,N,fi}	[mm]		2 x h _{ef}	1	
Edge distance					om one side: c _n		
		C _{min}	[mm]	Fire attack from more than one side: $c_{min} \ge 300 \text{ mm} \text{ and } \ge 2 \text{ x } h_{ef}$			

¹⁾ As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020 § 2.2.1.

Sormat Liebig Superplus™ self-undercutting anchor	
Design according to <u>ETAG 001, Annex C</u> Characteristic tension resistance under fire exposure	Annex C5

Table C6: Characteristic	tension	resistance	under	fire	exposure	for	design	method	Α
according to <u>E</u>	<u>TAG 001,</u>	Annex C, Bl	LS, BLS	-Р, В	LS A4/HCR	, BL	S-P A4/H	CR and S	\$D

BLS / BLS-P /					Anchor size (h _{ef,max})				
BLS A4/HCR / BLS-		R / SD		M8 - 14/80	M12 - 20/150	M16 - 25/200			
Steel failure				-		-			
		R30	[kN]	0,37	1,70	3,10			
	BLS /	R60	[kN]	0,33	1,30	2,30			
	BLS-P	R90	[kN]	0,26	1,10	0,84			
Characteristic registeres N		R120	[kN]	0,18	0,84	1,60			
Characteristic resistance $N_{Rk,s,fi}$		R30	[kN]	0,73	2,5	4,7			
	BLS / BLS-P	R60	[kN]	0,59	2,1	3,9			
	A4/HCR	R90	[kN]	0,44	1,7	3,1			
		R120	[kN]	0,37	1,3	2,5			
Pull-out failure									
		R30	[kN]	4,0	10,0	18,8			
	BLS /	R60	[kN]	4,0	10,0	18,8			
	BLS-P	R90	[kN]	4,0	10,0	18,8			
Characteristic registeres N		R120	[kN]	3,2	8,0	15,0			
Characteristic resistance $N_{Rk,p,fi}$		R30	[kN]	3,0	10,0	15,0			
	BLS / BLS-P	R60	[kN]	3,0	10,0	15,0			
	A4/HCR	R90	[kN]	3,0	10,0	15,0			
			[kN]	2,4	8,0	12,0			
Concrete cone and splitting failu	ure ¹⁾								
		R30	[kN]	10,3	49,6	101,8			
Characteristic resistance N _{Rk.c.fi}		R60	[kN]	10,3	49,6	101,8			
Characteristic resistance N _{Rk,c,fi}			[kN]	10,3	49,6	101,8			
		R120	[kN]	8,2	39,7	81,5			
Spacing		S _{cr,N,fi}	[mm]		4 x h _{ef}				
Spacing		S _{min}	[mm]	80	150	180			
Edge distance		C _{cr,N,fi}	[mm]		2 x h _{ef}				
		C _{min}	[mm]	Fire attack f	Fire attack from one side: $c_{min} = 2 \times h_{ef}$ Fire attack from more than one side: $c_{min} \ge 300 \text{ mm}$ and $\ge 2 \times h_{ef}$				

¹⁾ As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020 § 2.2.1.

Sormat Liebig Superplus™ self-undercutting anchor	
Design according to <u>ETAG 001, Annex C</u> Characteristic tension resistance under fire exposure	Annex C6

Table C7: Characteristic shear resistance under fire exposure for design method A according
to ETAG 001, Annex C, BLS, BLS-P, BLS A4/HCR, BLS-P A4/HCR and SD

		BLS / BLS-P / BLS A4/HCR / BLS-P A4/HCR / SD				
BL3 / BL3-P / BL3 A4/HCK /	DL3-P A	HUK	130	M8	M12	M16
Steel failure without lever arm						
		R30	[kN]	0,37	1,7	3,1
	BLS /	R60	[kN]	0,33	1,3	2,3
	BLS-P	R90	[kN]	0,26	1,1	2,0
Characteristic resistance V _{Rk.s.fi}		R120	[kN]	0,18	0,84	1,6
	BLS /	R30	[kN]	0,73	2,5	4,7
	BLS7 BLS-P	R60	[kN]	0,59	2,1	3,9
	A4/HCR	R90	[kN]	0,44	1,7	3,1
	AHION	R120	[kN]	0,37	1,3	2,5
Steel failure with lever arm			-			
		R30	[Nm]	0,38	2,6	6,6
	BLS /	R60	[Nm]	0,34	2,0	5,0
	BLS-P	R90	[Nm]	0,26	1,7	4,3
Characteristic bending resistance		R120	[Nm]	0,19	1,3	3,3
M ⁰ _{Rk,s,fi}	BLS / BLS-P A4/HCR	R30	[Nm]	0,75	3,9	9,9
		R60	[Nm]	0,60	3,3	8,3
		R90	[Nm]	0,45	2,6	6,6
	A	R120	[Nm]	0,38	2,1	5,3
Concrete pryout failure		1		M8 - 14/40	M12 - 20/80	M16 - 25/150
Factor in eq. (5.6) of ETAG Annex C	, § 5.2.3.3	k	[-]	1	2	2
		R30	[kN]	1,8	20,6	99,2
Characteristic registeres V		R60	[kN]	1,8	20,6	99,2
Characteristic resistance $V_{Rk,cp,fi}$		R90	[kN]	1,8	20,6	99,2
		R120	[kN]	1,5	16,4	79,4
Concrete pryout failure				M8 - 14/80	M12 - 20/150	M16 - 25/200
Factor in eq. (5.6) of ETAG Annex C	, § 5.2.3.3	k	[-]		2	
		R30	[kN]	20,6	99,2	203,6
Charactoristic resistance V		R60	[kN]	20,6	99,2	203,6
Characteristic resistance $V_{Rk,cp,fi}$		R90	[kN]	20,6	99,2	203,6
		R120	[kN]	16,4	79,4	163,0
Concrete edge failure						

Concrete edge failure

The initial value V⁰_{Rk,c,fi} of the characteristic resistance in concrete C20/25 to C50/60 under fire exposure may be determined by:

 $V^{0}_{Rk,c,fi} = 0,25 \times V^{0}_{Rk,c} \quad (\le R90)$

 $V_{Rk,c,fi}^{0} = 0,20 \times V_{Rk,c}^{0}$ (R120)

with $V_{Rk,c}^{0}$ initial value of the characteristic resistance in cracked concrete C20/25 under normal temperature.

Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020 § 2.2.1.

TR 020 covers design for fire exposure from one side. For fire attack from more than one side the edge distance must be increased to $c_{min} \ge 300$ mm and $\ge 2 \cdot h_{ef}$.

Sormat Liebig Superplus™ self-undercutting anchor	
Design according to <u>ETAG 001, Annex C</u> Characteristic shear resistance under fire exposure	Annex C7

Table C8: Characteristic value for design method A							i static I	oading
					Anc	hor type		
BLS / BLS-P)		M8	- 14	M1:	2 - 20	M16	- 25
			/40/	/80/	/80/	/150/	/150/	/200/
Steel failure							•	
Characteristic resistance	N _{Rk,s}	[kN]	29	9,3	6	7,4	12	5,6
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,5		
Pull-out failure								
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	9	16	25	40	50	75
Characteristic resistance in non-cracked concrete C20/25	N _{Rk,p}	[kN]	not decisive failure mode					
		C30/37	1,22					
Increasing factor for $N_{Rk,p}$	Ψc	C40/50	1,41					
		C50/60				1,55		
Partial safety factor	γ _{Mp} ¹⁾	[-]				1,5 ²⁾		
Concrete cone failure and splittin	ng failure							
Effective anchorage depth	h _{ef}	[mm]	40	80	80	150	150	200
Factor for cracked concrete	k _{cr}	[-]	7,2					
Factor for non-cracked concrete	k _{cr}	[-]	10,1					
Center Spacing	S _{cr,N}	[mm]	120 240 240 450 450		450	600		
Edge distance	C _{cr,N}	[mm]	60 120 120 225 225			300		
Center Spacing (splitting)	S _{cr,sp}	[mm]	140	360	360	540	560	560
Edge distance (splitting)	C _{cr,sp}	[mm]	70	180	180	270	280	280
Partial safety factor γ_{Mc}	=γ _{Msp} ¹⁾	[-]				1,5 ²⁾		

¹⁾ In absence of other national regulations

 $^{2)}$ The installation safety factor of γ_2 = 1,0 is included.

Sormat Liebig Superplus™ self-undercutting anchor

Design according to CEN/TS 1992-4

Characteristic resistance under tension loads

Annex C8

able C9: Characteristic val design method A								-
					An	chor type		
BLS A4/HCR / BLS-I	A4/HCR	l / SD	M8	- 14	M1	2 - 20	M16	- 25
			/40/	/80/	/80/	/150/	/150/	/200/
Steel failure			•	ł	•		•	
Characteristic resistance	N _{Rk,s}	[kN]	29	9,3	6	7,4	125	5,6
Partial safety factor	γ _{Ms} ¹⁾	[-]				1,6		
Pull-out failure								
Characteristic resistance in cracked concrete C20/25	N _{Rk,p}	[kN]	9	12	25	40	60	60
Characteristic resistance in non-cracked concrete C20/2	5 N _{Rk,p}	[kN]	not decisive failure mode					
		C30/37	1,22					
Increasing factor for $N_{Rk,p}$	Ψc	C40/50	C40/50 1,41					
		C50/60	1,55					
Partial safety factor	γ _{Mp} ¹⁾	[-]				1,5 ²⁾		
Concrete cone failure and s	plitting fail	ure						
Effective anchorage depth	h _{ef}	[mm]	40	80	80	150	150	200
Factor for cracked concrete	k _{cr}	[-]				7,2		
Factor for non-cracked concre	te k _{cr}	[-]		10,1				
Center Spacing	S _{cr,N}	[mm]	120	240	240	450	450	600
Edge distance	C _{cr,N}	[mm]	60	120	120	225	225	300
Center Spacing (splitting)	S _{cr,sp}	[mm]	140	360	360	540	560	560
Edge distance (splitting)	C _{cr,sp}	[mm]	70	180	180	270	280	280
Partial safety factor	γ _{Mc} =γ _{Msp} ¹⁾	[-]				1,5 ²⁾		

¹⁾ In absence of other national regulations

 $^{2)}$ The installation safety factor of γ_2 = 1,0 is included.

Sormat Liebig Superplus	[™] self-undercutting anchor
-------------------------	---------------------------------------

Design according to CEN/TS 1992-4

Characteristic resistance under tension loads

Annex C9

Table C10: Characteristic values for shear loads in case of static and quasi static loading for design method A according to CEN/TS 1992-4, BLS and BLS-P

						Anc	hor type		
	BLS / BLS-P			M8 - 14		M12 - 20		M16 - 25	
				/40/	/80/	/80/	/150/	/150/	/200/.
Steel fa	ailure without lever arm								
BLS	Characteristic resistance for In-place installation	V _{Rk,s}	[kN]	41,4 70,0 118			8,0		
	Partial safety factor	γ _{Ms} ¹⁾	[-]				1,25		
BLS-P	Characteristic resistance for Pre-positioned installation	V _{Rk,s}	[kN]	14	4,6	3	3,7	62	2,8
	Partial safety factor	γ _{Ms} ¹⁾	[-]			1	1,25	1	
Factor f	or considering ductility	k ₂	[-]				1,0		
Steel fa	ailure with lever arm								
Charact	teristic bending resistance	M ⁰ _{Rk,s}	[Nm]	30 105 266			66		
Partial s	safety factor	γ _{Ms} ¹⁾	[-]	1,25					
Concre	te pryout failure	<u> </u>	1						
Factor i § 6.2.2.	n eq. (16) of CEN/TS 1992-4-4, 3	k ₃	[-]	1 2 2 2			2		
Partial s	safety factor	γ _{Mc} ¹⁾	[-]				1,5 ²⁾		
Concre	te edge failure								
Effective load	e length of anchor under shear	$\ell_{\rm f}$	[mm]	40	80	80	150	150	200
	diameter of anchor	d _{nom}	[mm]	1	4	2	20	2	5
Cracke reinforc	d concrete without any edge ement					1	1,00	I	
	d concrete with straight edge ement > Ø12 mm	Ψ _{ucr,V}	[-]	1,20					
and clos	d concrete with edge reinforcement sely spaced stirrups (a ≤ 100mm) or acked concrete			1,40					
Partial s	safety factor	γ _{Mc} ¹⁾	[-]	1,5 ²⁾					

Sormat Liebig Superplus™ self-undercutting anchor	
Design according to CEN/TS 1992-4 Characteristic resistance under shear loads	Annex C10

						Anchor type				
BL	S A4/HCR / BLS-P A4/HC	R / SD)	M8	- 14	M12 - 20		M16	- 25	
				/40/	/80/	/80/	/150/	/150/	/200/	
Steel fail	ure without lever arm			•		•	•			
BLS	Characteristic resistance for In-place installation	V _{Rk,s}	[kN]	44,6 90,3 169,			9,8			
	Partial safety factor	γ _{Ms} 1)	[-]				1,33	1		
BLS-P	Characteristic resistance for Pre-positioned installation	V _{Rk,s}	[kN]	14	1,6	3	3,7	62	2,8	
	Partial safety factor	γ _{Ms} ¹⁾	[-]				1,33	1		
Factor for	considering ductility	k ₂	[-]				1,0			
Steel fail	ure with lever arm									
Characte	ristic bending resistance	M ⁰ _{Rk,s}	[Nm]	30 105 266			6			
Partial sa	fety factor	γ _{Ms} ¹⁾	[-]	1,33						
Concrete	e pryout failure									
Factor in C, § 5.2.3	equation(5.6)of ETAG Annex 3.3	k ₃	[-]	1 2 2 2		2				
Partial sa	fety factor	γ _{Mc} ¹⁾	[-]	1,5 ²⁾						
Concrete	edge failure			•						
Effective load	length of anchor under shear	$\ell_{\rm f}$	[mm]	40	80	80	150	150	200	
	liameter of anchor	d _{nom}	[mm]	1	4	:	20	2	5	
Cracked reinforcer	concrete without any edge ment						1,00			
	concrete with straight edge ment > Ø12 mm	Ψ _{ucr,V}	[-]				1,20			
and close	concrete with edge reinforcement ly spaced stirrups (a≤100mm) or ked concrete			1,40						
Partial sa	fety factor	γ _{Mc} ¹⁾	[-]	1,5 ²⁾						
¹⁾ In abse	nce of other national regulations		-							
²⁾ The ins	tallation safety factor of γ_2 = 1,0 is	include	d.							
0	Linkin One and The M		44.							
Sormat	Liebig Superplus™ self-u	naercu	itting a	ancho	r					
						Annex	C11			

Table C12: Characteristic tension	resistance	e under fire	e exposure f	or design method A
according to CEN/TS 19	92-4 <mark>, BLS</mark>	, BLS-P, BL	S A4/HCR, BL	S-P A4/HCR and SD

BLS / BLS	Anchor size (h _{ef,min})							
BLS A4/HCR / BLS-P A4/HCR / SD					M12 - 20/80	M16 - 25/150		
Steel failure								
		R30	[kN]	0,37	1,70	3,10		
	BLS /	R60	[kN]	0,33	1,30	2,30		
	BLS-P	R90	[kN]	0,26	1,10	0,84		
Characteristic registeres N		R120	[kN]	0,18	0,84	1,60		
Characteristic resistance $N_{Rk,s,fi}$		R30	[kN]	0,73	2,5	4,7		
	BLS /	R60	[kN]	0,59	2,1	3,9		
	BLS-P A4/HCR	R90	[kN]	0,44	1,7	3,1		
		R120	[kN]	0,37	1,3	2,5		
Pull-out failure								
		R30	[kN]	2,3	6,3	12,5		
	BLS / BLS-P	R60	[kN]	2,3	6,3	12,5		
		R90	[kN]	2,3	6,3	12,5		
Characteristic registeres N		R120	[kN]	1,8	5,0	10,0		
Characteristic resistance $N_{Rk,p,fi}$		R30	[kN]	2,3	6,3	15,0		
	BLS / BLS-P	R60	[kN]	2,3	6,3	15,0		
	A4/HCR	R90	[kN]	2,3	6,3	15,0		
		R120	[kN]	1,8	5,0	12,0		
Concrete cone and splitting failu	ure ¹⁾							
		R30	[kN]	1.8	10,3	49,6		
Characteristic registeres N		R60	[kN]	1.8	10,3	49,6		
Characteristic resistance $N_{Rk,c,fi}$		R90	[kN]	1.8	10,3	49,6		
		R120	[kN]	1.5	8,2	39,7		
Spacing		S _{cr,N,fi}	[mm]		4 x h _{ef}			
		S _{min}	[mm]	80	150	150		
		C _{cr,N,fi}	[mm]		2 x h _{ef}			
Edge distance		C _{min}	[mm]	Fire attack from one side: $c_{min} = 2 \times h_{ef}$ Fire attack from more than one side: $c_{min} \ge 300 \text{ mm and} \ge 2 \times h_{ef}$				

¹⁾ As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020 § 2.2.1.

Sormat Liebig Superplus™ self-undercutting anchor	
Design according to CEN/TS 1992-4 Characteristic tension resistance under fire exposure	Annex C12

Table C13: Characteristic tension	resistance ur	nder fire exposure	for design method A
according to CEN/TS 1	992-4, BLS, BL	S-P, BLS A4/HCR,	BLS-P A4/HCR and SD

BLS / BLS	Anchor size (h _{ef,max})								
BLS A4/HCR / BLS-	M8 - 14/80	M12 - 20/150	M16 - 25/200						
Steel failure									
		R30	[kN]	0,37	1,70	3,10			
	BLS /	R60	[kN]	0,33	1,30	2,30			
	BLS-P	R90	[kN]	0,26	1,10	0,84			
Characteristic registeres N		R120	[kN]	0,18	0,84	1,60			
Characteristic resistance $N_{Rk,s,fi}$		R30	[kN]	0,73	2,5	4,7			
	BLS /	R60	[kN]	0,59	2,1	3,9			
	BLS-P A4/HCR	R90	[kN]	0,44	1,7	3,1			
	/////	R120	[kN]	0,37	1,3	2,5			
Pull-out failure									
		R30	[kN]	4,0	10,0	18,8			
	BLS / BLS-P	R60	[kN]	4,0	10,0	18,8			
		R90	[kN]	4,0	10,0	18,8			
Characteristic registeres N		R120	[kN]	3,2	8,0	15,0			
Characteristic resistance $N_{Rk,p,fi}$		R30	[kN]	3,0	10,0	15,0			
	BLS /	R60	[kN]	3,0	10,0	15,0			
	BLS-P A4/HCR	R90	[kN]	3,0	10,0	15,0			
		R120	[kN]	2,4	8,0	12,0			
Concrete cone and splitting failu	ure ¹⁾								
		R30	[kN]	10,3	49,6	101,8			
Characteristic registeres N		R60	[kN]	10,3	49,6	101,8			
Characteristic resistance $N_{Rk,c,fi}$		R90	[kN]	10,3	49,6	101,8			
		R120	[kN]	8,2	39,7	81,5			
		S _{cr,N,fi}	[mm]		4 x h _{ef}				
Spacing		S _{min}	[mm]	80	150	180			
		C _{cr,N,fi}	[mm]		2 x h _{ef}				
Edge distance	C _{min}	[mm]	Fire attack from one side: $c_{min} = 2 \times h_{ef}$ Fire attack from more than one side: $c_{min} \ge 300 \text{ mm and } \ge 2 \times h_{ef}$						

¹⁾ As a rule, splitting failure can be neglected when cracked concrete and reinforcement is assumed.

Design under fire exposure is performed according to the design method given in TR 020. Under fire exposure usually cracked concrete is assumed. The design equations are given in TR 020 § 2.2.1.

Sormat Liebig Superplus™ self-undercutting anchor	
Design according to CEN/TS 1992-4 Characteristic tension resistance under fire exposure	Annex C13

					Anchor size	
BLS / BLS-P / BLS A4/HCR /	DL2-P A4		/ 30	M8	M12	M16
Steel failure without lever arm		-				
		R30	[kN]	0,37	1,7	3,1
	BLS /	R60	[kN]	0,33	1,3	2,3
	BLS-P	R90	[kN]	0,26	1,1	2,0
Characteristic resistance $V_{Rk,s,fi}$		R120	[kN]	0,18	0,84	1,6
	BLS /	R30	[kN]	0,73	2,5	4,7
	BLS-P	R60	[kN]	0,59	2,1	3,9
	A4/HCR	R90	[kN]	0,44	1,7	3,1
	AAMOR	R120	[kN]	0,37	1,3	2,5
Steel failure with lever arm	1					
		R30	[Nm]	0,38	2,6	6,6
Characteristic bending resistance M ⁰ _{Rk,s,fi}	BLS /	R60	[Nm]	0,34	2,0	5,0
	BLS-P	R90	[Nm]	0,26	1,7	4,3
		R120	[Nm]	0,19	1,3	3,3
	BLS / BLS-P A4/HCR	R30	[Nm]	0,75	3,9	9,9
		R60	[Nm]	0,60	3,3	8,3
		R90	[Nm]	0,45	2,6	6,6
		R120	[Nm]	0,38	2,1	5,3
Concrete pryout failure				M8 - 14/40	M12 - 20/80	M16 - 25/15
Factor in eq. (5.6) of ETAG Annex C	, § 5.2.3.3	k	[-]	1	2	2
		R30	[kN]	1,8	20,6	99,2
Characteristic registeres V		R60	[kN]	1,8	20,6	99,2
Characteristic resistance $V_{Rk,cp,fi}$		R90	[kN]	1,8	20,6	99,2
		R120	[kN]	1,5	16,4	79,4
Concrete pryout failure				M8 - 14/80	M12 - 20/150	M16 - 25/20
Factor in eq. (5.6) of ETAG Annex C	, § 5.2.3.3	k	[-]		2	
		R30	[kN]	20,6	99,2	203,6
		R60	[kN]	20,6	99,2	203,6
Characteristic resistance $V_{Rk,cp,fi}$		R90	[kN]	20,6	99,2	203,6
		R120	[kN]	16,4	79,4	163,0
Concrete edge failure				· · · · · · · · · · · · · · · · · · ·		
he initial value V ⁰ _{Rk,c,fi} of the charact e determined by: V ⁰ _{Rk,c,fi} = 0,25 x V						e exposure ma
<i>v</i> $R_{k,c,fi} = 0,23 \times v$						al temperature
Design under fire exposure is per	f		to the	dooign moth	ad aivan in TD	020

edge distance must be increased to $c_{min} \ge 300 \text{ mm}$ and $\ge 2 \cdot h_{ef}$.

Sormat Liebig Superplus™ self-undercutting anchor	
Design according to CEN/TS 1992-4 Characteristic shear resistance under fire exposure	Annex C14

Table C15: Displacements under tension loads BLS and BLS-P												
		Displacements and tensile loads in C20/25 to C50/60										
	Cracked concrete						Non-cracked concrete					
BLS / BLS-P		C20/25			C50/60)		C20/25	5	C50/60		
	Ν	d _{N0}	d _{N∞}	Ν	d _{N0}	d _{N∞}	Ν	d _{N0}	d _{N∞}	Ν	d _{N0}	d _{N∞}
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8 - 14/40	1.6	0.1	0.2	2.5	0.1	0.2	5.1	0.1	0.2	7.8	0.1	0.2
M8 - 14/80	5.9	0.2	0.4	15.1	0.2	0.4	10.8	0.2	0.4	15.1	0.2	0.4
M12 - 20/80	5.9	0.1	0.2	9.2	0.1	0.2	14.3	0.1	0.2	22.2	0.1	0.2
M12 - 20/150	15.9	0.2	0.5	39.7	0.2	0.5	28.4	0.2	0.5	39.7	0.2	0.5
M16 - 25/150	15.9	2.0	2.0	24.6	2.0	2.0	36.7	2.0	2.0	52.9	2.0	2.0
M16 - 25/200	29.8	2.0	2.0	74.1	2.0	2.0	52.9	2.0	2.0	74.1	2.0	2.0

Table C16: Displacements under tension loads BLS A4/HCR, BLS-P A4/HCR and SD

	Displacements and tensile loads in C20/25 to C50/60											
BLS A4/HCR /	Cracked concrete						Non-cracked concrete					
BLS-P A4/HCR	C20/25				C50/60			C20/25	5	C50/60		
	Ν	d _{N0}	d _{N∞}	Ν	d _{N0}	d _{N∞}	Ν	d _{N0}	d _{N∞}	Ν	d _{N0}	d _{N∞}
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]
M8 - 14/40	3.6	0.3	1.1	5.5	0.3	1.1	3.4	0.2	0.6	5.5	0.1	0.6
M8 - 14/80	5.7	0.5	1.7	5.7	0.5	1.7	13.9	2.0	2.0	13.9	2.0	2.0
M12 - 20/80	9.9	0.5	0.9	15.4	0.7	0.9	14.3	0.4	0.6	32.1	1.0	1.0
M12 - 20/150	15.9	0.9	1.4	15.4	0.7	1.4	32.1	3.8	3.8	32.1	1.0	1.0
M16 - 25/150	23.8	0.9	1.4	36.9	1.4	1.4	36.7	0.7	0.7	59.8	3.4	3.4
M16 - 25/200	23.8	1.2	1.6	36.9	1.4	1.6	59.8	5.0	5.0	59.8	3.4	3.4

Sormat Liebig Superplus™ self-undercutting anchor

Annex C15

Design Displacements

	Displacements and shear loads in C20/25 to C50/60										
BLS / BLS-P	Cracked c	oncrete C20/2	25 - C50/60	Non-cracked concrete C20/25 - C50/60							
	V	d _{v0}	dv∞	V	d _{v0}	dv∞					
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]					
M8 - 14/40	11.4	5.0	7.5	11.4	2.1	3.1					
1010 - 14/40	11.4	(+1.2)	(+1.2)	11.4	(+1.2)	(+1.2)					
M8 - 14/80	11.4	5.0	7.5	11.4	2.1	3.1					
IVIO - 14/0U		(+1.2)	(+1.2)	11.4	(+1.2)	(+1.2)					
M42 20/90	22.9	5.0	7.5	22.0	2.5	3.8					
M12 - 20/80		(+1.3)	(+1.3)	22.9	(+1.3)	(+1.3)					
M42 20/450	22.9	5.0	7.5	22.9	2.5	3.8					
M12 - 20/150	22.9	(+1.3)	(+1.3)	22.9	(+1.3)	(+1.3)					
	45.7	4.0	6.0	45.7	3.3	5.0					
M16 - 25/150	45.7	(+1.3)	(+1.3)	45.7	(+1.3)	(+1.3)					
M40 05/000	45.7	4.0	6.0	45.7	3.3	5.0					
M16 - 25/200	45.7	(+1.3)	(+1.3)	45.7	(+1.3)	(+1.3)					

Table C17: Displacements under shear loads BLS and BLS-P

Table C18: Displacements under shear loads BLS A4/HCR, BLS-P A4/HCR and SD

	Displacements and shear loads in C20/25 to C50/60									
BLS A4/HCR /	Cracked c	oncrete C20/2	25 - C50/60	Non-cracked concrete C20/25 - C50/60						
BLS-P A4/HCR	V	d _{V0}	d _{V∞}	V	d _{v0}	d _{V∞}				
	[kN]	[mm]	[mm]	[kN]	[mm]	[mm]				
M8 - 14/40	25.5	6.3	9.5	25.5	6.3	9.5				
110 - 14/40	20.0	(+1.7)	(+1.7)	20.0	(+1.7)	(+1.7)				
M8 - 14/80	25.5	6.3	9.5	25.5	6.3	9.5				
14/00	20.0	(+1.7)	(+1.7)	20.0	(+1.7)	(+1.7)				
M40 00/00	51.6	8.0	12.0	F1 G	8.0	12.0				
M12 - 20/80		(+1.7)	(+1.7)	51.6	(+1.7)	(+1.7)				
M12 - 20/150	51.6	8.0	12.0	51.6	8.0	12.0				
WI12 - 20/150	51.0	(+1.7)	(+1.7)	51.0	(+1.7)	(+1.7)				
M16 - 25/150	96.5	8.8	13.2	96.5	8.8	13.2				
W116 - 25/150	90.0	(+1.7)	(+1.7)	90.5	(+1.7)	(+1.7)				
M16 - 25/200	96.5	8.8	13.2	96.5	8.8	13.2				
10 - 23/200	90.0	(+1.7)	(+1.7)	90.0	(+1.7)	(+1.7)				

Displacement: the table shows the deformation to be expected from the anchor itself, whilst the bracket value indicates the movement between the anchor body and the hole drilled in the concrete member or the hole in the fixture.

Sormat Liebig Superplus™ self-undercutting anchor Annex C16

> **Design** Displacements