

ETA-Danmark A/S Göteborg Plads 1 DK-2150 Nordhavn Tel. +45 72 24 59 00 Fax +45 72 24 59 04 Internet www.etadanmark.dk Authorised and notified according to Article 29 of the Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011

European Technical Assessment ETA-06/0270 of 2020/01/07

I General Part

Technical Assessment Body issuing the ETA and designated according to Article 29 of the Regulation (EU) No 305/2011: ETA-Danmark A/S

Trade name of the construction product:

Simpson Strong-Tie Joist Hangers See type numbers in section II.1 of the ETA

Product family to which the above construction product belongs:

Three-dimensional nailing plate (Joist hanger for wood to wood connections and wood to concrete or steel connections)

Manufacturer:

SIMPSON STRONG-TIE Int. Ltd For local branch refer to <u>www.strongtie.eu</u>

Manufacturing plant:

SIMPSON STRONG-TIE Manufacturing facilities

This European Technical Assessment contains:

216 pages including 4 annexes which form an integral part of the document

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of: Guideline for European Technical Approval (ETAG) No. 015 Three Dimensional Nailing Plates, April 2013, used as European Assessment Document (EAD).

This version replaces:

The ETA with the same number issued on 2018-02-13

II SPECIFIC PART OF 1	THE EUROPEAN TECHNICAL ASSESSMENT	6
1 Technical description of pro	oduct and intended use	6
2 Specification of the intende	d use in accordance with the applicable EAD	6
3 Characteristics of product a	and assessment	8
4 Assessment and verification	n of constancy of performance (AVCP)	12
5 Technical details necessary 12	for the implementation of the AVCP system, as foreseen in th	e applicable EAD
ANNEX A REVISION HIS	TORY	13
ANNEX B TYPICAL INST	ALLATIONS	16
B1 Joist hangers on timber		16
B2 Joist hanger on rigid supp	port	16
B3 Nail Pattern		17
B4 Conditions for using I-bea	m headers	19
B5 Conditions for using I-bea	m joists	20
B6 SJH typical installation		21
ANNEX C BASIS OF DES	BIGN	22
C0 Symbols used in the ETA-	06/0270	22
C1 Definition of Force Direction	ons and Eccentricity	24
C2 Characteristic Capacity Mo	odification Methods	25
C3 Fastener Specification and	d Capacities	26
C4 Design Formula where app	oropriate	34
C4.1 Joist hangers on timber	r	37
C4.2 Joist hangers on Rigid	support	45
C4.3 Load combination		53
C4.4 Straps hanger on timbe	r	54
C4.5 Straps hangers on rigid	support	57
ANNEX D PRODUCT DE	FINITION AND CAPACITIES	58
D1 AG703 Straps hanger		59
D2 AG713 Straps hanger		61

Page 3 of 216 of European	Technical Assessment no	ETA-06/0270	issued on	2020-01-07

	Page 3 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07	
D3	BSD Joist hanger	63
D4	BSDI Joist hanger	67
D5	BSI Joist hanger	69
D6	BSIN Joist hanger	72
D7	BSIL Joist hanger	78
D8	BSN Joist hanger	80
D9	BSNN Joist hanger	84
D10	BSS Joist hanger	88
D11	ETC Truss connector	92
D12	ETC392 Truss Connector	95
D13	ETC G/D Truss Connector	102
D14	GBE Joist hanger	105
D15	GBI Joist hanger	107
D16	GLE Joist hanger	109
D17	GLE-AL Joist hanger	117
D18	GLI Joist hanger	125
D19	GLI-AL Joist hanger	127
Dime	ensions	127
D20	GSE Joist hanger	129
D21	GSE-AL Joist hanger	139
D22	GSEXL Joist hanger	144
D23	GSI Joist hanger	145
D24	GSI-AL Joist hanger	147
D25	HGUQ Joist hanger	149
D26	HGUS Joist hanger	150
D27	JHA270 Straps hanger	152
D28	JHA450 Straps hanger	154
D29	JHR/L Joist hanger	156
D30	LUP Joist hanger	157
D31	MF Joist hanger	158
D32	MH Joist hanger	159

Page 4 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

D33	SAE Joist hanger	160
D34	SAE250/38/1,5 Joist hanger	166
D35	SAE590, SAE620 and SAE690 Joist hanger	168
D36	SAEL Joist hanger	171
D37	SAI Joist hanger	177
D38	SAI590, SAI620 Joist hanger	182
D39	SAIL Joist hanger	184
D40	SAIX Joist hanger	189
D41	SAMI/4X Joist hanger	194
D42	SBE Joist hanger	195
D43	SBE45/168/TF Joist hanger	200
D44	SBG/SLE Joist hanger	201
D45	SDED/G and BNS2P Joist hanger	204
D46	SHT Strap hanger	205
D47	SJH Joist hanger	206
D48	TFU Joist hanger	208
D49	THA Straps hanger	213
D50	THAI Straps hanger	215

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

II SPECIFIC PART OF THE EUROPEAN TECHNICAL ASSESSMENT

1 Technical description of product and intended use

Technical description of the product

This ETA covers the following joist hangers types: AG703, AG713, BSD, BSDI, BSN, BSNN, BSI, BSIL, BSIN, BSS, ETC, ETC G/D, GBE, GBI, GLE, GLE-AL, GLI, GLI-AL, GSE, GSE-AL, GSEXL, GSI, GSI-AL, HGUQ, HGUS, JHA270, JHA450, JHR/L, LUP, MF, MH, SAE, SAE250/38/1.5, SAE590, SAE620, SAE690, SAEL, SAI, SAI590, SAI620, SAIL, SAEX, SAIX, SAMI/4X, SBE, SBE45/168/TF, SBG/SLE, SDED/G, BSN2P, SHT, SJH, TFU, THA, THAI.

Simpson Strong-Tie joist hangers type BSD, BSN, BSNN, BSIN, BSS, ETC, GBE, GBI, GLE, GLE-AL, GSE, GSE-AL, HGUQ, HGUS, LUP, MF, MH, SAE, SAE590, SAE620, SAE690, SAEL, SAEX, SBE, SBG/SLE, SJH and TFU are one-piece non-welded, face-fixed external flanges joist hangers to be used in timber-to-timber connections as well as connections between a timber joist and a concrete structure or a steel member.

Simpson Strong-Tie joist hangers type GSEXL and SAMI/4X are one-piece non-welded, face-fixed external flanges joist hangers to be used in connections between a timber joist and a concrete structure or a steel member.

Simpson Strong-Tie joist hangers type BSI, BSDI, SAI, SAIL, SAIX, GSI, GSI-AL, GLI, GLI-AL and BSIL are one-piece non-welded, face-fixed, internal flanges joist hangers to be used in timber-to-timber connections.

Simpson Strong-Tie joist hangers type JHR, JHL, ETCG and ETCD are one-piece non-welded, face-fixed, both external and internal flanges joist hangers to be used in timber-to-timber connections.

Simpson Strong-Tie joist hangers type BSN2P, SDED and SDEG are two-pieces non-welded, face-fixed external flanges joist hanger to be used in timber to timber connections as well as connection between a timber and a concrete structure or a steel member.

Simpson Strong-Tie AG703, AG713, JHA, SHT, THA and THAI, joist hangers are one-piece, non-

welded, face-fixed or wrapped-over timber-totimber joist hangers. They are connected to a header to support a timber joist with a range of nails.

The materials for headers and joists can be of solid timber, glued laminated timber or engineered timber products such as LVL or I-joist (fitted with backer blocks if used for the header).

The joist hangers are made from pre-galvanized steel Grade S250GD + Z (min Z275) according to EN 10346 or pre-galvanized steel with a minimum characteristic 0.2% yield stress of 250MPa, a minimum ultimate tensile strength of 330MPa and a minimum Elongation of 19%, with tolerances according to EN 10143 except if another material is specified (named "Steel ref 1" in the rest of the document). Material, dimensions and nails positions are detailed in Annex D and typical installations are detailed in Annex B. By default all the products are made out of this material except when specified.

All joist hangers can also be produced from stainless steel number 1.4401, 1.4404, 1.4521, 1.4301 or 1.4509 according to EN 10088-2 or a stainless steel with a minimum characteristic 0.2% yield stress of 240 MPa, a minimum 1.0% yield stress of 270 MPa and a minimum ultimate tensile strength of 530 MPa (named "Steel ref 2" in the rest of the document). If no name is clearly specified, product variant made with stainless steel have generally the same name with a S (as Stainless) at the end.

Some joist hangers may be produced from steel grade S235JR according to EN 10025-2 (named "Steel ref 3" in the rest of the document). In this case, an additional coating must be added such as hot dip galvanizing or painting. Some additional coatings allow to reach service class 3.

2 Specification of the intended use in accordance with the applicable EAD

The joist hangers are intended for use in making end-grain to side-grain connections in load bearing timber structures, as a connection between a wood based joist and a solid timber or wood based header, where requirements for mechanical resistance and stability and safety in use in the sense of the Basic Works Requirements 1 and 4 of Regulation (EU) 305/2011 shall be fulfilled. They are also intended for use in making an end-grain connection between a timber joist and a concrete structure or a steel member.

The joist hangers can be installed as connections between wood based members such as:

- Structural solid timber classified to C14-C40 according to EN 338 / EN 14081,
- Glulam classified to GL24-GL36 according to EN 1194 / EN 14080,
- LVL according to EN 14374,
- · Parallam PSL,
- Intrallam LSL.
- · Duo- and Triobalken,
- Layered wood plates,
- Kreuzbalken with minimum thickness of 80 mm
- I-beams with backer blocks on both sides of the web in the header and web stiffeners in the joist
- Plywood according to EN 636
- Cross Laminated timber according to EN 16351

However, the calculation methods are only allowed for a characteristic wood density of up to 460 kg/m³. Even though the wood based material may have a larger density, this must not be used in the formulas for the load-carrying capacities of the fasteners.

When used on CLT only CSA screws shall be used with the connectors. The edge distance and spacing of each CSA screw must be checked according to the specifications given by the manufacturer of the timber. If nothing is specified, edge distance and spacing must be in accordance to the outer layer of the CLT panels.

Annex C defines the directions of forces and also states the formulas for the characteristic load-carrying capacities of the joist hanger connections. The design of the connections shall be in accordance with Eurocode 5 or a similar national Timber Code.

The joist hangers are intended for use for connections subject to static or quasi static loading.

The scope of the hangers regarding resistance to corrosion shall be defined according to national provisions that apply at the installation site considering environmental conditions and in conjunction with the admissible service conditions according to EN 1995-1-1 and the admissible corrosivity category as described and defined in EN ISO 12944-2

The provisions made in this European Technical Assessment are based on an assumed intended working life of the post bases brackets of 50 years.

The indications given on the working life cannot be interpreted as a guarantee given by the producer or Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Characteristics of product and assessment

Char	acteristic	Assessment of characteristic
3.1	Mechanical resistance and stability*) (BWR1)	
Chara	acteristic load-carrying capacity	See Annex D
Stiffn	ess	No performance assessed
Ducti	lity in cyclic testing	No performance assessed
3.2	Safety in case of fire (BWR2)	
Reac	tion to fire	The joist hangers are made from steel steel classified as class A1 in accordance with EN 13501-1 and Commission Delegated Regulation 2016/364
3.3 Hygiene, health and the environment (BWR3)		
Influe	ence on air quality	No performance assessed
3.7	Sustainable use of natural resources (BWR7)	No performance assessed
3.8	General aspects related to the performance of the product	The joist hangers have been assessed as having satisfactory durability and serviceability when used in timber structures using the timber species described in Eurocode 5 and subject to the conditions defined by service class 1 and 2
Identification		See Annex D

^{*)} See additional information in section 3.9 - 3.12.

3.9 Methods of verification Safety principles and partial factors

The characteristic load-carrying capacities are based on the characteristic values of the nail connections and the joist hangers. To obtain design values the capacities have to be divided by different partial factors for the material properties, the nail connection in addition multiplied with the coefficient k_{mod} .

According to EN 1990 (Eurocode – Basis of design) paragraph 6.3.5 the design value of load-carrying capacity may be determined by reducing the characteristic values of the load-carrying capacity with different partial factors.

Thus, the characteristic values of the load–carrying capacity are determined also for timber failure $F_{Rk,H}$ (obtaining the embedment strength of nails subjected to shear or the withdrawal capacity of the most loaded nail, respectively) as well as for steel plate failure $F_{Rk,S}$. The design value of the load–carrying capacity is the smaller value of both load–carrying capacities.

$$F_{Rd} = min\left\{\frac{k_{mod} \cdot F_{Rk,H}}{\gamma_{M,H}}; \frac{F_{Rk,S}}{\gamma_{M,S}}\right\}$$

Therefore, for timber failure the load duration class and the service class are included. The different partial factors γ_{M} for steel or timber, respectively, are also correctly taken into account.

3.10 Mechanical resistance and stabilitySee Annex C for characteristic load-carrying capacities of the joist hangers.

The characteristic capacities of the joist hangers are determined by calculation assisted by testing or only testing as described in the EOTA Guideline 015 clause 5.1.2. They should be used for designs in accordance with Eurocode 5 or a similar national Timber Code.

The design models allow the use of fasteners described in the table in Annex C3:

The characteristic load-carrying capacities of the products shall be calculated in accordance with the manufacturer's design code, extracts of which are given in Annex C4. The design code has been derived in accordance with ETAG 015 and Eurocode 5 (2008).

The calculated values should be used for designs in accordance with Eurocode 5 or a similar national Timber Code. These values are based on the assumption that there is a maximum gap of 3 mm

between the timber members, the members are laterally restrained and wane is not present in the timber at the joint.

The hangers shall be used with the fasteners specified in Annex C3.

Furthermore, the Face mount hangers types BSD, BSN, BSNN, BSIL, BSIN, BSS, JHR/L, SAE, SAEL, SAEX, SAIX, SDED/G, GSE, GSE-AL, GSEXL, MF, SAMI/4X, GLE, GLE-AL, ETC, GBE, TFU, SBE, SBG, SLE and SJH can be fastened to a concrete structure or steel member with 8 to 12 mm diameter bolts in holes with a diameter up to 2 mm larger than the bolt.

No performance has been determined in relation to the joint's stiffness properties - to be used for the analysis of the serviceability limit state.

No performance has been determined in relation to ductility of a joint under cyclic testing. The contribution to the performance of structures in seismic zones, therefore, has not been assessed.

3.11 Aspects related to the performance of the product

3.11.1 Corrosion protection in service class 1 and 2. In accordance with ETAG 015, joist hangers have a zinc coating weight of min Z275. Steel employed is S250GD with min Z275 according to EN 10346:2009.

3.11.2 Corrosion protection in service class 3. In accordance with Eurocode 5, joist hangers are made from stainless steel number 1.4401, 1.4404, 1.4521, 1.4301 or 1.4509 according to EN 10088-2 or a stainless steel with a minimum characteristic 0.2% yield stress of 240 MPa, a minimum 1.0% yield stress of 270 MPa and a minimum ultimate tensile strength of 530 MPa. The nails or screws shall be produced from stainless steel.

Joist hangers coated with hot dip galvanisation, or made of S250GD steel with zinc coating ZM310 according to EN 10346:2009, can also be used in service class 3 according to Eurocode 5.

3.12 General aspects related to the use of the product

Simpson Strong-Tie joist hangers types AG703, AG713, BSD, BSDI, BSN, BSNN, BSI, BSIL, BSIN, BSS, ETC, ETC G/D, GBE, GBI, GLE, GLE-AL, GLI, GLI-AL, GSE, GSE-AL, GSEXL, GSI, GSI-AL, HGUQ, HGUS, JHA270, JHA450, JHR/L, LUP, MF,

MH, SAE, SAE250/38/1.5, SAE590, SAE620, SAE690, SAEL, SAI, SAI590, SAI620, SAIL, SAEX, SAIX, SAMI/4X, SBE, SBE45/168/TF, SBG/SLE, SDED/G, BSN2P, SHT, SJH, TFU, THA, THAI are manufactured in accordance with the provisions of this European Technical Assessment using the manufacturing processes as identified in the inspection of the plant by the notified inspection body and laid down in the technical documentation.

Joist hanger connections

Joist hangers shall be installed on the basis of a specific structural design for each installation, using the load-bearing capacities derived from the formulas and specific factors k_{H1} and k_{H2} given in Annex D, applying the appropriate k_{mod} factor depending on the relevant service class / duration of load and the appropriate National partial safety factor for materials.

The fixing of Joist hangers to the support shall use the appropriate nails or screws or bolts in case of solid wood or wood-based support, appropriate CE marked metal anchors for use in concrete in case of concrete support. The load bearing capacities which can be derived from Annex C are given provided that the fixing device has been appropriately designed and installed.

Joist hangers shall be installed by appropriately qualified personnel, following an installation plan and relevant construction details worked out for each individual building project. The installation plan shall be based on the manufacturers general guide and provisions for installing SIMPSON Strong-Tie connections.

A joist hanger connection is deemed fit for its intended use provided:

Header – support conditions

 The header shall be restrained against rotation and be free from wane under the joist hanger.

If the header carries joists only on one side the eccentricity moment from the joists $M_{\rm ec} = R_{\rm joist} \, (b_{\rm header}/2 + e_{\rm hail})$ shall be considered at the strength verification of the header.

 R_{joist} Reaction force from the joists

b_{header} Width of header

e_{nail} Distance from nails in the joist to the of the header

 For a header with joists from both sides but with different reaction forces a similar consideration applies.

Wood to wood connections

- Joist hangers can be fastened to wood-based members by nails or screws.
- There shall be nails or screws in all holes or a partial nailing pattern as prescribed in <u>Annex B</u> can be used.
- The characteristic capacity of the joist hanger connection is calculated according to the manufacturer's technical documentation.
- The joist hanger connection is designed in accordance with Eurocode 5 or an appropriate national code.
- The gap between the end of the joist and the surface, where contact stresses can occur during loading shall be limited. This means that for joist hangers with outward flaps shall the gap between the surface of the end of the joist and that of the header be maximum 3 mm.
 Joist hangers with inward flaps shall the gap
 - Joist hangers with inward flaps shall the gap between the surface of the nail heads in the inward flaps and the end of the joist be maximum 8 mm.
- For joist hanger BSN, BSD, BSI, BSDI and SBG the width of the joist shall be at least I_{pen}+2.9d, where I_{pen} is the length of the nails and d is the diameter of the nails in the joist, for full nailing and partial nailing without staggering the nails in the joist. For partial nailing with staggered nails in the joist the width shall be at least the penetration length of the nails. For joist hanger with staggered nails in the joist, the width of the joist shall be at least the penetration length of the nails.
- The cross section of the joist at the joist hanger connection shall have sharp edges at the lower side against the bottom plate, i.e. it shall be without wane.
- The cross section of the header shall have a plane surface against the whole joist hanger.
- The width B_J of the joist shall correspond to that
 of the joist hanger. B_J shall not be smaller than
 A-3 mm, where A is the inner width of the joist
 hanger.
- The depth of the joist shall be so large that the top of the joist is at least 20 mm above the upper nail in the joist.
- Joist hangers made from stainless steel should only be fastened with fasteners made from

suitable stainless steel. Zinc-coated joist hangers shall not be fastened with fasteners of stainless steel.

 Nails or screws to be used shall have a diameter, which fits the holes of the joist hangers. Round nails shall have a diameter which is not smaller than the diameter of the hole minus 1 mm. Nails with square cross section shall have a side length not smaller than the hole diameter minus 1,25 mm.

Straps hangers shall be installed to meet the following requirements:

- The hanger is connected to header using the specified nails in <u>Annex C3</u>. The hanger side and back flanges may have a slight splay from nesting within the packing. It is essential to hold the hanger square to the header before nailing.
- Where it is necessary to wrap the straps over the header, a minimum wrap over of 45 mm is required for the JHA and THA and 65 mm for the THAI, AG703 and AG713 to achieve the minimum nailing specification.
- Header is restrained against rotation before application of full loading.

Wood to concrete or steel

The above mentioned rules for wood-to-wood connections are applicable also for the connections between the joist and the joist hanger.

- The joist hanger shall be in close contact with the concrete or steel over the whole face. There shall be no intermediate layers in between.
- The gap between the end of the joist and the surface, where contact stresses can occur during loading shall be limited. This means that the gap between the surface of the end of the joist and that of the concrete or steel shall be maximum 3 mm.
- The bolt shall have a diameter not less than the hole diameter minus 2 mm.
- The bolts shall be placed symmetrically about the vertical symmetry line. There shall always be bolts in the 2 upper holes.
- For concrete, the bolts shall use washers recommended with the mechanical anchor delivery by the suppliers. For steel, the upper bolts shall have washer Ø18 mm minimum.

- For I-joist headers backer blocks of softwood, OSB or plywood shall be installed (see Annex B).
- The size, material and installation details of the backer blocks shall be in accordance to the joist manufacturer's specifications.
- The joist is installed in the hanger ensuring it is free from wane and the gap between the end of joist and header does not exceed 3 mm.
- The specified joist nails are installed. For instances where double shear nailing is specified, ensure that the correct nail is installed into the joist at an angle of 45°. For the THAI, the specified nail is to be driven downwards at an angle of 45°, into the joist.
- When the supported member is an I-joist it will be necessary to install web stiffeners to the end of the joist if the top flange is not laterally restrained by the hanger side flanges. Refer to joist manufacturer's literature for details of web stiffener installation.

4 Assessment and verification of constancy of performance (AVCP)

4.1 AVCP system

According to the decision 97/638/EC of the European Commission1, as amended, the system(s) of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) is 2+.

5 Technical details necessary for the implementation of the AVCP system, as foreseen in the applicable EAD

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at ETA-Danmark prior to CE marking

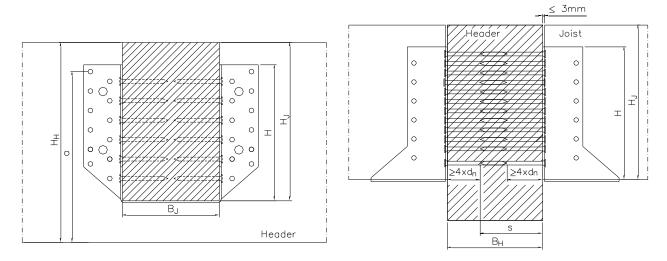
Issued in Copenhagen on 2020-01-07 by

Thomas Bruun

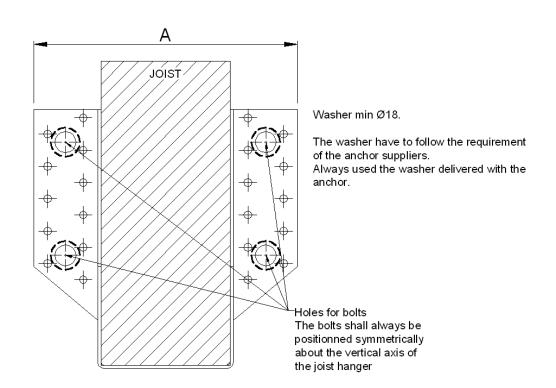
Managing Director, ETA-Danmark

ANNEX A REVISION HISTORY

	Modifications and additions to the previous versions of ETA-06/0270
Issue No.	Update
1.0	First release
	BSD – Modification of the drawing
	BSDI – Modification of the drawing
	SAE590, SAE620-a and SAE620-b have been added
	SDED/G have been added
2.0	SDED/G – New formula for downward direction, upward direction and lateral direction
2.0	SBE and SBG – Axial force has been added
	SBE – The model of calculation for the SBG is used.
	Square washer 30x30x3 has been deleted and replaced by standard washer Ø18 mm
	Al and A joist hanger have been deleted
	New model of calculation for concrete application (excepted for SBE and SBG)
	Modification of the text about material
	BSD/I – Insertion of new blank model in the first two tables
	BSD/I – Modification of the drawing
	SBG – Modification of the minimum width of SBG in both tables
	BSD/I – Modification of the four tables
3.0	SBG – Correction of the value of k _{H,2} and insertion of a line for 38 mm (full nailing)
	SBG – Correction of the value of k _{H,2} and insertion of a line for 38 mm (partial nailing)
	BSD/I – Modification of the table
	BSD/I – Modification of the table
	Update following names: Standard to BSN, I to BSI
	Merging ETA-06/0270 with ETA-07/0150 and ETA-07/0043
	Add SLE variant of SBG
4.0	Correction of the SBG drawing
4.0	Correction of some inversion of letter in the ETA
	Addition of stainless steel types
	Add SAMI/4X
	Add fire resistance for GSE/4 and GLE/4
	Add new values for SAE with square twist nails
5.0	Add HGUQ
3.0	Other updates
	Standard correctionBNS2P
	- BSD drawing
	- BSN and BSI 440 blank model
	Add GBE - GBI
	Add TFU
	Add SHT
6.0	Values on concrete for SAE250/38/1.5
	Update of dimension of SAMI/4X
	CSA5.0x80 for fire performance
	Update of ETC502 and ETC485R (download + uplift)
	Redesign of Product Annex
	Modifications and additions to the previous versions of ETA-06/0270

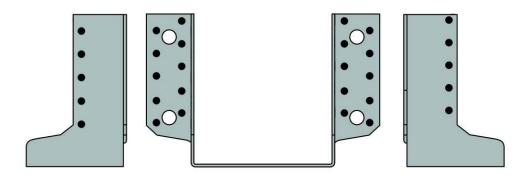

Issue No.	Update		
	Add ZM310 for service class 3		
	Add SSH/SSF screws nail pattern indications, specifications and capacities. Add also tables with SSH/SSF screws for BSNN, GLE, GSE, GSE-AL, SAE, SAEL and SBE joist hangers.		
	Remove ARS 4,0x50 values table		
	Indicate that the 3 rd part of Eq.6 [7A √] is in N		
	Add BSNN to the header and below Eq.17		
	Add "n _{H,eff} is the number of nails in the first row close to the bending line" below Eq.17		
	Add "n₁ the number of bolts on each flange on the header" below Eq.33		
	Add "when connected to timber, z _{max} is reduced by 20 mm" below Eq.43		
	Add "F _{anchor,Rk} is the resistance of the anchors group / bolts group in case of timber to timber connection" below Eq.46		
	Add "anchors/bolts" and for timber to timber connections via bolts, the centre of rotation is 20 mm above the bottom plate for Eq.53		
	BSIN – Add BSIN100/100 modified version and associated data		
	BSN – Correct heights: for blank 280 mm, height B of 90 mm instead of 140 mm		
	BSNN – Add blanks 300, 340 and 380 mm new version and associated data		
7.0	ETC – Correct number of header nails in the table of F _k capacities: for ETC502 (a), 25 mm instead of 15 mm and for ETC502 (c), 15 instead of 25 mm		
	ETC – Add ETC392		
	GBE – Update GBE parameters		
	GLE / GLI – Add new blanks and dimensions		
	Add GLE-AL and GLI-AL joist hangers		
	GSE – Correct holes joist quantity of GSE900/2,5X and GSE900/4X from 38 to 36		
	GSI – Update dimension A _{max} of GSI from 140 to 136 and dimension A _{min} of GSI-AL from 135 to 137		
	SAE, SAEL, SAI and SAIL – Add a mention to partial nailing of posts		
	SAEL – Correct SAEL width in dimensions table		
	SAI – Correct width of SAI620-a and SAI620-b, respectively from 90 to 100 and from 101 to 200 mm		
	SAIX – Add alternative name SAEX for external flanges joist hangers		
	SAIX - Add ZM310 to SAEX and SAIX		
	Add SJH joist hanger		
	THAI – Add THAI1200 straps hanger		
	Add fire resistance for GSE/4 on concrete		

Modifications and additions to the previous versions of ETA-07/0150			
Issue No.	Updates		
1.0	First release		
	GSE780/120 - New loads on concrete		
	HGUS from UK - k _{H1} and k _{H2}		
	Calibration factors for GSE and GSI on wood/wood		
	GSE/GSI - New model for wood/rigid support application (ID151)		
	k _{h1} and k _{h2} are not given for JHL/R. Situation to be clarified. See project F1044		
2.0	Add HGUQ product range		
	Change product type in HGUS table in annex 48 (currently refers to GSE)		
	Change the identity of type IL from blank to width x height (annex 49)		
	Add 4.0 nails for HGUS range		
	Add widths up to 300mm for HGUS48		
	Add axial resistance of GSE/I timber and concrete		
	Change the identity of type IL to BSIL and also from blank to width x height		
	Add HGUQ product range		
	Add widths up to 300mm for HGUS48 and add Spec HGUS		
	Change product type in HGUS table in annex 48 (currently refers to GSE)		
2.0	Add 4.0 nails for HGUS range		
3.0	Calibration factors for GSE and GSI on wood/wood		
	GSE/GSI - New model for wood/rigid support application (ID151)		
	Add axial resistance of GSE/I on timber and concrete		
	Add ranges ETC - ETC G/D - GSEXL - GLE/GLI		
	Update following names: IL to BSIL, S to BSS		

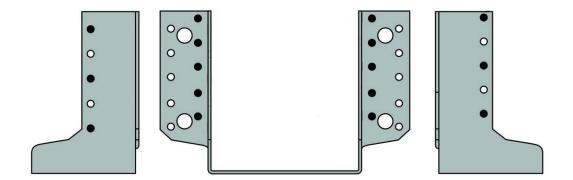

Modifications and additions to the previous versions of ETA-07/0043			
Issue No.	Updates		
1.0	First Release		
	EN 1195-1-1:2004 changed to EN 1995-1-1:2004 + A1:2008		
	JHA & THA minimum wrap over changed from 55mm to 45mm		
	Figure 1 updated: Table 1 split into two tables: Material reference's updated		
	Table A3 was table 2. Table updated - model number changed & material reference updated.		
	Figure A3 updated.		
	Table A4 was table 3. THAI322 added to table: Material reference updated.		
	Table A5 was table 4.		
0.0	Table A6 was table 5. Table updated - additional installation configurations added for JHA270, JHA450 & THA		
2.0	Formula reference numbers added		
	Formula (2) updated; Formula (3) added; Formula (4) updated		
	Formula (14) updated; Formula (16) added; Formula (18) updated		
	Figure A2.10.1 was Figure A1		
	Definition of symbols table updated - Beff and Leff added		
	Annex 3. Table 3.1 was table 8; Table 3.2 was table 7; Table 3.3 was table 6; Table 3.4 was table 9		
	Annex 4. Table updated - Leff, Beff, CHor & Kef added to table; Bmin* removed from table.		
	Annex 5 added.		
3.0	Add AG703 & AG713		
3.0	Merging ETA-06/0270 with ETA-07/0150 and ETA-07/0043		

ANNEX B TYPICAL INSTALLATIONS

B1 Joist hangers on timber

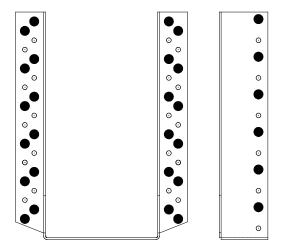


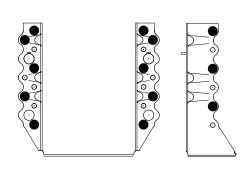
B2 Joist hanger on rigid support


B3 Nail Pattern

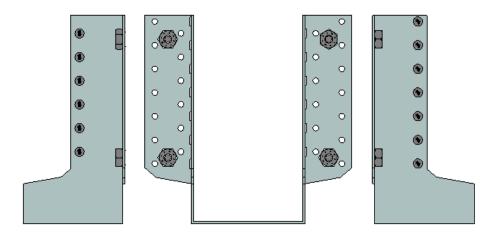
Full nail fixing: General application

Fill it in all the holes with nails, on the face and the side flanges.


Partial nail fixing: General application

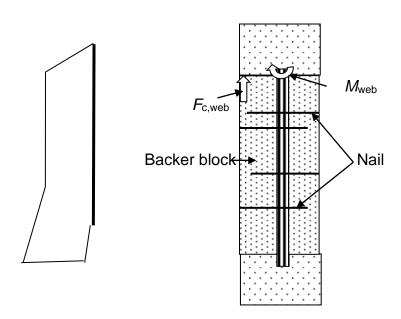


- On the side flanges: Place one nail out of two on each side flange, starting from the first hole on the top of the flange.
- On the face flanges: Place the nails on each face flange, on the vertical line next to the folding.


Partial nailing for connection to column

The distance between the nails in the direction of the fibre shall be at least 20 mm.

Fixing with SSH or SSF connector screws:


- On the side flanges: Fill with SSH or SSF connector screws in the face flanges all large holes that fulfil the minimum spacing stated in annex C3.
- On the face flanges: Fill all holes with Ø4 nails or Ø5 connector screws.

B4 Conditions for using I-beam headers

When an I-beam is used as header beam it is a condition for the load-carrying capacity, that 2 backer blocks are installed, because it prevents a bending failure of the web in the I-beam as explained in the following. Further, the nails, which normally are nailed in the side of the solid header beam, can instead be nailed into the backer blocks. Therefore, the sum of the thicknesses of the backer blocks and the web shall at least be equal to the length of the nails in the header

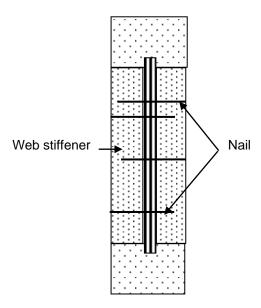
For both reasons it is important that the backer block supports the underside of the top flange of the header I-beam and is sufficiently connected to the web of the head I-beam.

The rope effect results in a tensile force F_t directed toward the edge of the flange. If there are no backer blocks installed, there exists a risk for a bending failure by M_{web} at the neck of the web due to the torsion. With at backer block installed the torsional moment will be taken by a compression force $F_{c,web}$ between the backer block and the underside of the flange and tensile force in the web.

Static model for a vertical force downward. The header beam has been drawn a little away to the right to show the forces acting. The header is shown with the forces and moment acting on it.

The surface of the backer block shall be flush with the side of the flange and shall fit tight to the underside of the flange and shall be nailed with sufficient nails to secure, that the backer blocks and the web functions as one piece of solid timber. It is required that the number of nails in the backer block shall be determined from:

$$n_{nail,backerblcok} = 2 \cdot n_{header}$$


Where: n_{header} is the total number of nails from the joist hanger into the header. If the header has a joist hanger on each side, the number of nails shall be doubled.

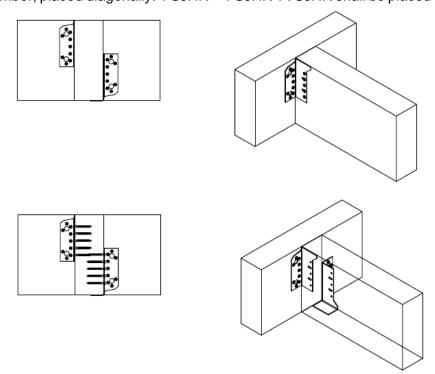
The nails in the backer block shall have a length so their tip will go through the web and at least 20 mm into the opposite backer block.

The I-beam can be prevented from rotation by several means. For example can the wood based panel normally nailed to the top flange and the boards typically nailed to the bottom flange prevent the I-beam from rotating.

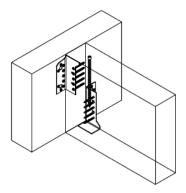
B5 Conditions for using I-beam joists

When an I-beam is used as a joist it is a condition for the load-carrying capacity, that 2 web stiffeners are nailed to the web of the joist, one on each side.

Web stiffeners on the joist at the joist hanger. The web stiffener shall fit to the bottom flange and have a width of 2/3 of the height between the inner sides of the flanges.

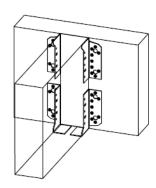

The surface of the web stiffeners shall be flush with the side of the flange of the joist and shall fit tight to the lower flange and shall be nailed with sufficient nails to secure, that the web stiffeners and the web functions as one piece of solid timber. So, the number of nails in each web stiffener shall be:

$$n_{nail,web-stif} = n_{joist}$$

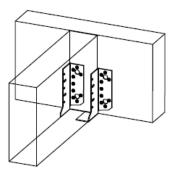

Where: n_{joist} is the total number of nails from the joist hanger into the joist.

B6 SJH typical installation

Basic installation on timber, placed diagonally: 1 SJHR + 1 SJHR-F. SJHR shall be placed flush to joist surface.



Installation with reinforcing full threaded screws when nails in joist does not overlap: 1 SJHR + 1 SJHR-F + 1 ESCRFTZ



Other possible configurations:

1 SJHR + 1 SJHR-F + 1 SJHL + 1 SJHL-F

SJHR + SJHR-F

On rigid support, only configurations where half hangers are placed symmetrically is allowed.

ANNEX C BASIS OF DESIGN

C0 Symbols used in the ETA-06/0270

For the purpose of ETA-06/0270, the following symbols apply.

*a*_{bolt} Bolt spacing

a-0.5a_c Lever arm of the effective nails (face-fixed hangers)

A Width of the joist hanger (mm)BlankBlank length of the joist hanger

C Hanger seat depth (mm)

C_{eff} Effective Compressed depth (mm)

C_{hor} Horizontal lever armc_i Calibration coefficient

d Divisor taking the inclination of the tilting force into account

d_{hole} Diameter of the hole for bolt

e Eccentricity = distance from the nails in the joist to the surface of the header

e_{center,x} Distance of topmost nails in the joist to the centre of nail group in the joist

e_{J,F} Distance of the lateral force above the centre of gravity of the nails in the joist

e_{J,nail} Distance from the nails in the joist to the surface of the header

For the joist hangers: BSN, SBE, I, BSD, BSDI fastened with threaded nails it has been

documented by tests that this eccentricity term can be disregarded.

e_{H,F} Distance of the lateral force above the centre of gravity of the nails in the header

 $f_{c,g_{0,k}}$ Characteristic compression strength perpendicular to the grain of joist or header material (MPa)

 $f_{c,90,k^*}$ Local compressive strength perpendicular to the grain of joist or header material (MPa)

 F_c Load contributions from contact pressure at top corner of header beam

F_{Hanger-Header} Load transfer from the joist hanger to the header beam per flange (N)

 $F_{Joist-Hanger}$ Load transfer from the joist to hanger per flange (N)

 $F_{Lat,nail}$ Lateral force of the nails per flange (N)

F_{hanger, Tension} Tensile capacity of the lower part of the joist hanger per flange (N)

 $f_{u,k}$ Tensile strength of hanger steel (MPa)

 $F_{v,RK,header}$ Characteristic lateral load carrying capacity of each of the nails in the header beam (N) $F_{v,Rk,joist}$ Characteristic lateral load-carrying capacity of each of the nails in the joist member (N)

h Height of the joist

H Maximum vertical distance between the nails in header

 h_e Effective height = distance from upper nail to the bottom plate $I_{p,H}$ Polar moment of inertia of the whole nail group in the header Polar moment of inertia of the whole nail group in the joist

 $I_{p,f}$ Polar moment of inertia around the centre of gravity of the nail group in one header flange

 $k_{c.90}$ Increase factor from EN 1995-1-1 = 2.5

 k_{ef} Rope effect efficiency factor

 $k_{ef} = 0.8 \text{ if b} = 100 \text{ mm}$

for a larger width, k_{ef} is linearly decreasing : $k_{ef} = 1 - 0.002$ *b with with in mm

Page 23 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

*k*_{Jef} reduction factor

 $k_{H,1}$ Form factor $k_{H,2}$ Form factor

I Top flap width (mm)

I_{eff} Effective compressive width of top flap (mm)

n_b Number of bolts - for joist hangers SBG, SLE and SBE, use: n_{ef,b}

 $n_{\rm J}$ Total number of nails in both sides of the joist $n_{\rm H}$ Total number of nails in the side of the header

 $n_{H,b}$ Number of nails in the header in the first row close to the bending line of the side flange.

*n*_{ef,b} Effective number of bolts

= 2,0 with 2 bolts in the SBG, SBE and SLE hanger = 3,2 with 4 bolts in the SBG, SBE and SLE hanger

 $n_{J,\text{eff}}$ Effective number of nails in the joist $\left[\text{round down}\left(\frac{n_j}{2}\right)\right] \times 2$

 $n_{H,eff}$ Effective number of nails in the header

*n*_{eff,ax} Number of effective nail per flange (face-fixed hangers)

 $n_{h, \text{ side nail}}$ Number of nails in the side of the header beam per flange

 $n_{h, top \ nail}$ Number of nails in the top of the header beam per flange

*n*_{skew nail} Number of skew nails in double shear per flange

 $n_{top\ flange}$ Number of nails in the header beam top into the top flange of an I-beam

 n_{web} Number of nails in the header beam side into the web of an I-beam

Rax,k Characteristic axial load-carrying capacity of the nails in the joist or in the header indicated by the

indices J or H

R_{lat,k} Characteristic lateral load-carrying capacity of the nails in the joist or in the header indicated by the

indices J or H

R_{bolt,lat,k} Characteristic lateral capacity of the anchor bolt, however, for a thickness till 2,0 mm and an anchor

size of:

M10 maximum 11,0 kN

- M8 maximum 8,8 kN

For larger thicknesses, the capacity shall be the maximum of:

- 11,0 kN / 2,0 mm x thickness for an anchor size of M10 and accordingly

- 8,8 kN / 2,0 mm x thickness for an anchor size of M8

divergent for type SBE, SBG and SLE:

for downward and upward force: $R_{bolt,lat,k} \le 7,1 \text{ kN}$ for lateral force: $R_{bolt,lat,k} \le 12,0 \text{ kN}$

- divergent for type SDED/G:

for downward and upward force: R_{bolt,lat,k} ≤ 9,51 kN

- or the characteristic lateral load-carrying capacity of the anchor bolt in the material to which it is fastened

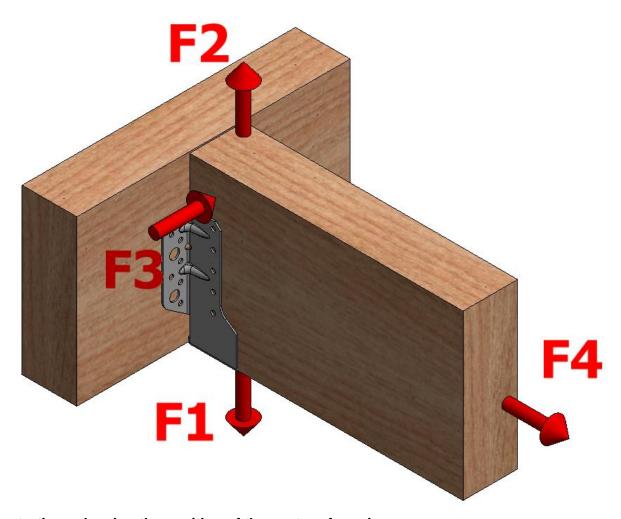
Critical width (mm)

S

 t_p Steel plate thickness (mm)

W Maximum horizontal distance between the nails in header

 y_{max} Maximum distance from a nail to the centre of gravity


 z_{max} Distance from upper bolts to bottom plate or by uplift force the distance from the lower bolt to the

top of joist hanger

 ρ_k Characteristic density of header or joist material (kg/m³)

C1 Definition of Force Directions and Eccentricity

It is assumed that the forces acting on the joist hanger connection are the following F_1 , F_2 , F_3 and F_4 , as shown in the figure below. The forces F_1 , F_2 and F_4 shall act in the middle of the joist hanger. The force F_3 is assumed to act $e_{J,F}$ above the centre of gravity of the nails in the joist. It is assumed that the forces are acting right at the end of the joist.

Illustrations showing the position of the centre of gravity:

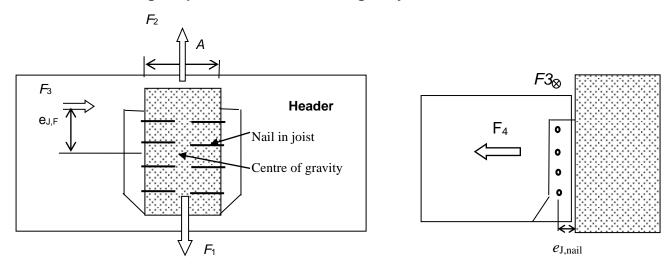
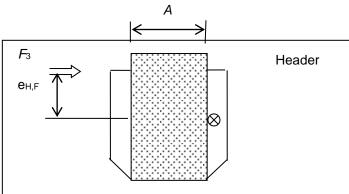



Figure 1: Definition of F₁, F₂, F₃, F₄, e_{i,F} and e_{i,nail}

Figure 2: The lateral force F_3 acts with an eccentricity $e_{H,F}$ in relation to the centre of gravity of the header nails in one flange - marked by \otimes - in the compressed side.

It is assumed that the header is prevented from rotating. Similar it is assumed that the concrete structure or the steel member to which the joist hanger is bolted does not rotate.

If the header beam only has installed a joist hanger on one side the eccentricity moment $M_v = F_d \cdot (A_H/2 + 30mm)$ shall be considered. The same applies when the header has joist hanger connections on both sides, but with vertical forces which differ more than 20%.

C2 Characteristic Capacity Modification Methods

Capacities expressed as numbers (not formulas) e.g. type SAMI and JHR/L are based on a characteristic density of

350 kg/m³. For timber or wood based material with a lower density than 350 kg/m³ the load carrying capacities shall be reduced by the K_{dens} factor:

$$K_{dens} = (\rho_k / 350)^2$$

where ρ_k is the characteristic density of the timber

C3 Fastener Specification and Capacities

Fastener types and sizes

NAILS diameter	Length Min – max	Nail type
4.0	35 - 100	Connector nails in accordance with ETA-04/0013
4.2	35 - 60	Connector nails in accordance with ETA-04/0013
3.1	35	Ring shank nails according to EN 14592
4.0	35 - 100	Ring shank nails according to EN 14592
3.75	30 - 32	SST Square Twist nails according to EN 14592
3.75	38 - 75	Round smooth nails according to EN 14592
4.0 – 4.5	35 - 100	Round smooth nails according to EN 14592

SCREWS diameter	Length Min – max	Screw type
5.0	35 - 50	Connector screws in accordance with ETA-04/0013
1/4	3 ½	Coach screws according to EN 14592
1/4	2 ½	Coach screws according to EN 14592
10.0	40 - 140	Connector screw SSH/SSF in accordance with DoP-h17/0015
12.0	60 - 140	Connector screw SSH/SSF in accordance with DoP-h17/0015

BOLTS diameter	Correspondence Holes diameter	Bolts type
8.0		
10.0	Max. 2 mm larger than the bolt	Cooperation of the manufacturer
12.0	diameter	See specification of the manufacturer
16.0		

Typical Hanger and Nail Type Combinations

Face Mount Hanger	Туре	Nails diameter	Length Min - Max	Nailing	Bolt possible	
AG703	ARS*	3.1	35	Other		
AG703	ST**	3.75	30	Other	-	
AG713	ARS*	4.0	50	Other	-	
BSD, BSDI, BSI, BSIN,	ARS*	4.0	35 - 100			
BSIL,BSN, BSNN,	ARS*	4.2	35 - 60		BSD, BSN, BSIL, BSS,	
BSS, JHL/JHR, GSE,	ST**	3.75	30		JHL/JHR, GSE, GSE-	
GSE-AL, GSI, GSI-AL, MF, GLE, GLE-AL, GLI,	SS***	4.0 - 4.5	35 - 100	Full /	AL, MF, GLE, GLE-AL,	
GLI-AL, SAE, SAEL, SAI, SAIL, SAEX, SAIX, SBE, SBG, SLE, SDED/G, BSN2P	Screw	5.0	35 - 50	Partial	SAE, SAEL, SAEX, SBE, SBG, SLE: M8-M12	
ETC, ETCG/D	ARS*	4.0	35 - 100	Other	M4O	
ETC, ETCG/D	Screw	5.0	35 - 50	Other	M12	
CDE CDI	Bolts	M16	1	Other	M16	
GBE, GBI	Screws	Ø10	60 - 100	Other	IVITO	
GSEXL	ARS*	4.0	50	Full	M12	
	SS***	3.75	75			
HGUS, Spec HGUS	SS***	4.0	90 - 100	Full	-	
	ARS*	4.0	60			
HGUQ	Screw	1/4 (inch)	3 ½ (inch)	Full		
HOUQ	Screw	1/4 (inch)	2 ½ (inch)	i uii	-	
JHA270, JHA450, THA,	ST**	3.75	30	Other	-	
THAI	ARS*	4.0	60 – 100	Other	-	
LUP	ST**	3.75	30	Full	-	
	ARS*	4.0	35 – 100			
MF	ARS*	4.2	35 – 60	Full	M10	
	Screw	5.0	35 – 50	-		
MH	ST**	3.75	30	Full	-	
SAMI/4X	ARS*	4.0	35	Full	M10	
SHT	ARS*	4.0	35	Full	-	
SJH	ARS*	4.0	35 – 50	Full	M10-M12	
TFU	ARS*	4.0	35-60	Other	M10	

*ARS: Annular Ring Shank nail
**ST: Square Twist nail

***SS: Smooth Shank nail

Typical Hanger Combinations with SSH/SSF

		Face flang	es	Side flanges			
Face Mount Hanger	Туре	Diameter	Length Min - Max	Туре	Diameter	Length Min - Max	
GSE,GSE-AL, GLE, GLE-AL, GLI, GLI-AL, SAE, SAEL, SBE	ARS*	4	35-100	SSH/SSF	10	40 - 140	
	Screw	5	35-100	SSH/SSF	12	60 - 140	
BSNN, SLE	ARS*	4	35-100	SSH/SSF	10	FO 140	
DOININ, OLE	Screw	5	35-100	33H/33F	10	50 - 140	

Page 28 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

in Annexe D for each type of face mount hangers

The hanger and nail type combinations in the table are typical, but other combinations may also be proven suitable, subject to following the design model in <u>Annex C4</u> of this document.

Capacities of combination with SSH/SSF connector screws are directly given in Annex D for each suitable hanger family.

Nail Capacity Tables

Capacities of 3.75 x 30 mm Square Twist Nails

Nail Reference	Nail Shape	Side Length or Diameter	Nail Length	Wire Tensile Strength	Plate Thickness	Timber Grade	Timber Char. Density	F _{ax,RK}	F _{v,RK}													
		(mm)	(mm)	(Mpa)	(mm)		(kg/m3)	(N)	(N)													
						C16	310	190	882													
						C18	320	203	907													
						C20	330	215	931													
3.75 x 30	S	3.4	30	600	0.9	C22	340	229	956													
ST	3	5.4	30	000	0.9	C24	350	242	981													
						C27	370	271	1031													
								C30	380	286	1056											
						SCL	420	349	1156													
						C16	310	188	876													
						C18	320	201	900													
						C20	330	213	925													
3.75 x 30		0.4	00	80 600	4.0	C22	340	226	949													
ST	S	3.4	30		1.2	C24	350	240	974													
						C27	370	268	1023													
									C30	380	283	1048										
						SCL	420	345	1147													
						C16	310	186	870													
											C18	320	198	894								
																C20	330	211	918			
3.75 x 30									0.5.5								C22	340	224	942		
ST	S	3.4	30	600	1.5	C24	350	237	967													
						C27	370	265	1015													
						C30	380	280	1040													
						SCL	420	342	1138													
						C16	310	183	860													
						C18	320	195	883													
						C20	330	207	907													
3.75 x 30						C22	340	220	931													
ST	S	3.4	30	600	600 2.0	2.0	C24	350	233	955												
																			C27	370	261	1003
												C30	380	275	1027							
						SCL	420	336	1123													

Capacities of 3.75 x 38 mm Round Wire Nails

Nail Reference	Nail Shape	Side Length or Diameter (mm)	Nail Length (mm)	Wire Tensile Strength (Mpa)	Plate Thickness (mm)	Timber Grade	Timber Char. Density (kg/m3)	F _{ax,RK}	F _{v,RK}										
		(111111)	(111111)	(wpa)	(11111)	040		(N)											
						C16	310	267	1105										
						C18 C20	320 330	285 303	1139 1172										
0.75 00						C20	340	322	1206										
3.75 x 38 SS	R	3.75	38	600	0.9	C24	350	341	1240										
						C27	370	381	1307										
						C30	380	402	1341										
						SCL	420	491	1461										
						C16	310	265	1098										
					C18	320	283	1131											
						C20	330	301	1165										
3.75 x 38						C22	340	319	1198										
SS	R	3.75	38	600	1.2	C24	350	338	1231										
						C27	370	378	1299										
																		C30	380
						SCL	420	487	1456										
						C16	310	263	1091										
										i					C18	320	280	1124	
										C20	330	298	1157						
3.75 x 38						C22	340	316	1190										
SS	R	3.75	38	600	1.5	C24	350	335	1223										
						C27	370	375	1290										
						C30	380	395	1323										
						SCL	420	483	1450										
						C16	310	259	1079										
						C18	320	276	1111										
									C20	330	294	1144							
3.75 x 38	75 x 38	600	2.0	C22	340	312	1176												
SS	R	3.75 38	600	∠.∪	C24	350	331	1209											
								C27	370	370	1275								
						C30	380	390	1308										
						SCL	420	476	1440										

Capacities of 3.75 x 75 mm Round Wire Nails

Nail Reference	Nail Shape	Side Length or Diameter (mm)	Nail Length (mm)	Wire Tensile Strength (Mpa)	Plate Thickness (mm)	Timber Grade	Timber Char. Density (kg/m3)	F _{ax,RK}	F _{v,RK}																	
		()	()	(p)	()	C16	310	534	1309																	
						C18	320	569	1337																	
						C20	330	605	1364																	
3.75 x 75					C22	340	642	1392																		
SS	R	3.75	75	600	0.9	C24	350	681	1420																	
						C27	370	761	1475																	
						C30	380	803	1502																	
						SCL	420	980	1614																	
						C16	310	532	1309																	
						C18	320	567	1336																	
				5 600	600		C20	330	603	1364																
3.75 x 75							C22	340	640	1391																
SS	R	3.75	75			1.2	C24	350	678	1419																
					C27	370	758	1474																		
																						C30	380	799	1502	
						SCL	420	976	1613																	
																							C16	310	530	1308
																			C18	320	564	1336				
																			C20	330	600	1363				
3.75 x 75						C22	340	637	1391																	
SS	R	3.75	75	600	1.5	C24	350	675	1418																	
						C27	370	755	1473																	
						C30	380	796	1501																	
						SCL	420	972	1612																	
						C16	310	526	1307																	
						C18	320	561	1335																	
						C20	330	596	1362																	
3.75 x 75	75	000	0.0	C22	340	633	1390																			
SS	R	3.75	3.75 75 600	600	600	600	600	600	600	600	600	600	2.0	C24	350	671	1417									
																		C27	370	750	1472					
						C30	380	791	1499																	
						SCL	420	966	1610																	

Capacities of 3.1 x 35 mm Ring Shank Nails according to Eurocode 5 for AG703 installation

Nail reference	Nail shape	Side length or Diameter (mm)	Nail length (mm)	Wire tensile Strength (MPa)	Plate thickness (mm)	Timber Grade	Timber Char. Density (kg/m³)	F _{ax,RK} (N)	F _{v,RK} (N)
					C16	310	473	1043	
						C18	320	473	1069
						C20	330	473	1094
3.1 x 35	ARS	2.4	35	600	1,2	C22	340	473	1119
ARS	ANS	3,1				C24	350	473	1145
						C27	370	473	1196
						C30	380	473	1221
						SCL	420	473	1290

Capacities of SSH/SSF connector screws for plates thickness $1,5 \le t \le 3$ mm

Large	Characteristic shear capacities depending on characteristic density, load perpendicular to grain							
connector screws with	320	kg/m³	350 k	kg/m³	380 H	kg/m³		
plate thickness	$F_{ax,Rk}$	F _{lat,Rk}	F _{ax,Rk}	F _{lat,Rk}	F _{ax,Rk}	F _{lat,Rk}		
1,5 ≤ t ≤ 3 mm	[N]	[N]	[N]	[N]	[N]	[N]		
SSH8.0x40*	2190	2770	2370	2920	2530	3050		
SSH8.0x50*	4879	2770	5242	2920	5598	3050		
SSH8.0x80*	4879	2770	5242	2920	5598	3050		
SSH10.0x40*	2700	3440	2930	3610	3150	3780		
SSH10.0x50*	5160	4740	5544	4720	5921	5220		
SSH10.0x80*	5160	4740	5544	4720	5921	5220		
SSH12.0x60*	5677	6170	6098	6240	6513	6780		
SSH12.0x80*	5677	6170	6098	6240	6513	6780		

^{*}SSH can be replaced by SSF

These capacities are valid only with the following minimum spacing and edge distances without predrilled holes:

	Mi	nimum distances	[mm]	
	Spacing parallel to grain	Spacing perpendicular to grain	Loaded edge	Unloaded edge
Connector screw	a ₁	a ₂	a _{2.t}	a _{2.c}
SSH8.0x40*	40	32	56	40
SSH8.0x50*	40	32	56	40
SSH8.0x80*	40	32	56	40
SSH10.0x40*	60 (40 if a ₂ ≥ 60)	40	50	40
SSH10.0x50*	60 (40 if a ₂ ≥ 60)	40	50	40
SSH10.0x80*	60 (40 if a ₂ ≥ 60)	40	50	40
SSH12.0x60*	40	60	80	40
SSH12.0x80*	40	60	80	40

^{*}SSH can be replaced by SSF

Capacities of SSH connector screws for plates $3 \le t \le 4 \text{ mm}$

Large connector	Characteristic shear capacities depending on characteristic density, load perp. to grain						
screws with	320 k	kg/m³	350 k	kg/m³	380 k	380 kg/m ³	
plate thickness	F _{ax,Rk}	F _{lat,Rk}	F _{ax,Rk}	F _{lat,Rk}	F _{ax,Rk}	F _{lat,Rk}	
3 ≤ t ≤ 4 mm	[N]	[N]	[N]	[N]	[N]	[N]	
SSH12.0x60*	5677	4750	6098	5030	6513	5620	
SSH12.0x80*	5677	4750	6098	5030	6513	5620	

^{*}SSH can be replaced by SSF

Page 33 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

These capacities are valid only with the following minimum spacing and edge distances without predrilled holes:

		Minimum distances [mm]						
	Spacing parallel to grain	Spacing perpendicular to grain	loaded edge	unloaded edge				
Connector screw	a 1	a ₂	a _{2.t}	a _{2.c}				
SSH12.0x60*	60	70	100	50				

^{*}SSH can be replaced by SSF

Capacities of SSH connector screws for plates $1,5 \le t \le 4$ mm and reduced distance to loaded edge.

Large connector	Characteristic capacities depending on characteristic density					
Screws with	320 kg/m ³		350 k	kg/m³	380 kg/m ³	
plate thickness	F _{ax,Rk}	F _{lat,Rk}	F _{ax,Rk}	F _{lat,Rk}	F _{ax,Rk}	F _{lat,Rk}
1,5 ≤ t ≤ 4 mm	[N]	[N]	[N]	[N]	[N]	[N]
SSH12.0x60*	5677	4248	6098	4498	6513	5026
SSH12.0x80*	5677	4248	6098	4498	6513	5026

^{*}SSH can be replaced by SSF

These capacities are valid only with the following minimum spacing and edge distances without predrilled holes:

		Minimum distanc	es [mm]	
	Spacing parallel to grain	Spacing perpendicular to grain	Loaded edge	Unloaded edge
Connector screw	a ₁	a ₂	a _{2.t}	a _{2.c}
SSH12.0x60*	60	70 (50 if a _{2.t} ≥ 80)	60	40

^{*}SSH can be replaced by SSF

For a_{1.t} and a_{2.c}, rules from EN1995 apply.

The fastener shall be driven completely into the wood or wood based material, which shall have a thickness of at least the length of the fastener minus the head and connector thickness.

For other SSH/SSF sizes and lower distances, please refer to DoP-h17/0015 and EN1995 calculation rules.

C4 Design Formula where appropriate

Characteristic capacities of the joist hanger connections with nails or screws only.

F₁ and F₂ are assumed to act in the middle of the joist. The lateral force is assumed to act at an distance e_{J,F} above the centre of gravity of the nails in the joist.

The connection is also allowed for connection to column, where the distance between nails perpendicular to grain is minimum 20mm.

Two nails patterns are specified. See ANNEX B

For joist hanger BSN, BSD, BSI, SBG and BSDI the width of the joist shall be at least I_{pen}+2.9d for nails and I_{pen}+4d for CSA screws, where I_{pen} is the penetration length of the nails and d is the diameter of the nails in the joist, for full nailing and partial nailing without staggering the nails in the joist. For partial nailing with staggered nails in the joist the width shall be at least the penetration length of the nails.

The following table summarizes the formulas to be used for the calculation of the various face mount hangers characteristic load-carrying capacities covered by the present ETA. Where no value is stated, no capacity is declared by formula. Some capacities are determined by tests only, see Annex D.

Hanger type	Timber to Timber : Threaded nails, screws, smooth nails* and bolts				Timber to rigid support Bolts, anchor bolts				Smooth and ST3.75x30	
	F ₁	F ₂	F ₃	F ₄	F ₁	F ₂	F ₃	F ₄	F ₁	F ₂
<u>AG703</u>	Eq78	Eq95 & Eq96	-	-	-	-	-	-	-	-
<u>AG713</u>	Eq78	Eq95 & Eq96	-	-	-	-	-	-	-	-
<u>BSD</u>	Eq1	Eq5	Eq11 & Eq12	-	Eq40	Eq58	Eq65 & Eq66 & Eq67	-	Eq18	Eq19
<u>BSDI</u>	Eq1	Eq5	Eq11 & Eq12	-	-	-	-	-	Eq18	Eq19
<u>BSN</u>	Eq1	Eq5	Eq11 & Eq12	-	Eq40	Eq58	Eq65 & Eq66 & Eq67	-	Eq18	Eq19
<u>BSNN</u>	Eq1	Eq6	Eq13	Eq17	Eq40	Eq59	Eq65 & Eq66 & Eq67	Eq71	-	-
<u>BSI</u>	Eq1	Eq5	Eq11 & Eq12	-	-	-	-	-	Eq18	Eq19
<u>BSIN</u>	Eq1	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	Eq18	Eq19
<u>BSIL</u>	Eq1	Eq5	Eq11 & Eq12	-	-	-	-	-	Eq18	Eq19
<u>BSS</u>	Eq1	Eq5	Eq11 & Eq12	-	Eq40	-	-	-	Eq18	Eq19
<u>ETC</u>	V	V	-	-	V	-	-	-	-	-
ETC G/D	V	-	-	-	V	-	-	-	-	-
<u>GBE</u>	Eq24 & Eq26	Eq27 & Eq28	Eq31	Eq35 & Eq39	Eq56 & Eq57	Eq63 & Eq64	Eq31	Eq74 & Eq75	-	-
<u>GBI</u>	Eq24 & Eq26	Eq27 & Eq28	Eq31	Eq35 & Eq39	Eq56 & Eq57	Eq63 & Eq64	Eq31	Eq74 & Eq75	-	-
GLE, GLE-AL	Eq2	Eq8	Eq11 & Eq12	Eq17	Eq46 ¹⁾	Eq61 & Eq62 ¹⁾	Eq68 & Eq69 & Eq70 ¹⁾	Eq71 & Eq72 ¹⁾	-	-
GLI, GLI-AL	Eq2	Eq8	Eq11 & Eq12	Eq17	-	-	-	-	-	-
<u>GSE</u>	Eq1	Eq5	Eq11 & Eq12	Eq17	Eq42 & Eq46 ¹⁾	Eq58 & Eq61 & Eq62 ¹⁾	Eq68 & Eq69 & Eq70 ¹⁾	Eq71 & Eq72 ¹⁾	Eq18	Eq19
GSE-AL	Eq1	Eq5	Eq11 & Eq12	Eq17	Eq42 & Eq46 ¹⁾	Eq58 & Eq61 & Eq62 ¹⁾	Eq68 & Eq69 & Eq70 ¹⁾	Eq71 & Eq72 ¹⁾	Eq18	Eq19
GSEXL	-	-	-	-	Eq46 ¹⁾	Eq61 ¹⁾	Eq69 & Eq70 ¹⁾	Eq72 ¹⁾		
<u>GSI</u>	Eq1	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	Eq18	Eq19
<u>GSI-AL</u>	Eq1	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	Eq18	Eq19
<u>HGUQ</u>	Eq1	Eq5	Eq11 & Eq12	-	-	-	-	-	-	-
<u>HGUS</u>	Eq3 + v	Eq9	-	-	-	-	-	-	-	-
<u>JHA270</u>	Eq78	Eq95 & Eq96	-	-	-	-	-	-	-	-
<u>JHA450</u>	Eq78	Eq95 & Eq96	-	-	-	-	-	-	-	-
JHR/L	V	V	-	-	-	-	-	-	-	-
<u>LUP</u>	Eq1	Eq5	Eq11 & Eq12	-	-	-	-	-	v	-
<u>MF</u>	Eq4	Eq10	-	Eq40	-	-	-	-	-	-
<u>MH</u>	-	-	-	-	-	-	-	-	v	-
SAE	Eq1	Eq5	Eq11 & Eq12	Eq17	Eq40	Eq58	Eq65 & Eq66 & Eq67	Eq71	Eq18	Eq19
SAE250/38/1.5	V	V	V	-	V	V	V	-	-	-
SAE590,620,690	Eq1 + v	Eq5	Eq11 & Eq12	Eq17	Eq40	Eq58	Eq65 & Eq66 &	Eq71	Eq18	Eq19

Page 36 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

							Eq67			
SAEL	Eq1	Eq5	Eq11 & Eq12	Eq17	Eq40	Eq58	Eq65 & Eq66 & Eq67	Eq71	Eq18	Eq19
SAI	Eq1	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	Eq18	Eq19
SAI590,620	Eq1 + v	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	Eq18	Eq19
SAIL	Eq1	Eq5	Eq11 & Eq12	Eq17	-	-	-	-	Eq18	Eq19
SAIX	Eq1	Eq5	Eq11 & Eq12	Eq17	Eq40	Eq58	Eq65 & Eq66 & Eq67	Eq71	-	-
SAMI/4X	V	-	-	-	-	-	-	-	-	-
SBE	Eq1	Eq6	Eq13	Eq17	Eq40	Eq59	Eq65 & Eq66 & Eq67	Eq71	-	-
SBE45/168/TF	V	V	-	-	-	-	-	-	-	-
SBG/SLE	Eq1	Eq6	Eq13	Eq17	Eq40	Eq59	Eq65 & Eq66 & Eq67	Eq71	-	-
SDED/G, BNS2P	Eq2	Eq7	Eq16	-	Eq41	Eq60	-	-	-	-
<u>SHT</u>	V	٧	-	-	-	-	-	-	-	-
<u>SJH</u>	V	V	V	٧	Eq47	Eq65	-	Eq69 ou 71 ?	-	-
<u>TFU</u>	V	٧	V	-	V	V	V	-	-	-
<u>THA</u>	Eq78	Eq95 & Eq96	-	-	-	-	-	-	-	-
<u>THAI</u>	Eq78	Eq95 & Eq96	-	-	Eq101	-	-	-	-	-

^{*} Smooth nails should be longer than 75 mm

v: Characteristic values given in the product annex ¹⁾: These equations can also be used to calculate values for timber to timber application, with bolts

^{-:} No value

C4.1 Joist hangers on timber

C4.1.1 Threaded nails or connector screws

This clause covers both the use of threaded nails and screws.

C4.1.1.1 F₁ load direction:

• For All Joist Hangers except SDED/G, BSN2P, GLE, GLE-AL, GLI, GLI-AL, HGUS and MF

$$R_{1,k} = \min \left\{ (n_J + 2) \cdot c_1 \cdot R_{lat,J,k}; c_1 \times \frac{1}{\sqrt{\left(\frac{1}{n_H R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H,1} R_{ax,H,k}}\right)^2}} \right\}$$
 Eq 1.

For GSE, GSI, GSE-AL and GSI-AL : $c_1 = 0.9$

For others: $c_1 = 1$

• For SDED/G, BSN2P, GLE, GLE-AL, GLI and GLI-AL

$$R_{1,k} = \min \left\{ n_J \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H,1} R_{ax,H,k}}\right)^2}} \right\}$$
 Eq 2.

• For HGUS

$$R_{1,k} = \min \left[k_{ef} \cdot A \cdot C \cdot k_{c,90} \cdot f_{c,90,k} + n_J \cdot k_{J,ef} \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H \cdot R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H1} \cdot R_{ax,H,k}}\right)^2}} \right]$$
 Eq 3.

k_{lef} are given in the following table:

ka,erare giver in the renewing table:							
Nail type and dimension	Reduction factor k _{J,ef}						
Round smooth 3,75 x 75	0,6						
Round smooth 4,0 x 90	0,6						
ETA annular ring shank 4,0 x 60 according to ETA-04/0013	0,4						

• For MF

$$R_{1,k} = \min \left[4, 2 \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H \cdot R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H1} \cdot R_{ax,H,k}}\right)^2}} \right]$$
 Eq 4.

C4.1.1.2 F₂ load direction:

• For the most joist hangers excepted for BSNN, SBG, SLE, SBE, SDED/G, BSN2P, GLE/I, GLE/I-AL, HGUS and MF

$$R_{2,k} = \min \left\{ c_2 . n_J \cdot R_{lat,J,k}; c_2 . \frac{1}{\sqrt{\left(\frac{1}{n_H R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H,2} R_{ax,H,k}}\right)^2}} \right\}$$
 Eq 5.

For GSE, GSI, GSE-AL and GSI-AL : $c_2 = 0.8$ For others: $c_2 = 1$

• For BSNN, SBG, SLE and SBE:

$$R_{2,k} = \min \left\{ n_J \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H,2} R_{ax,H,k}}\right)^2}}; 7A \sqrt{\frac{h_e}{1 - \frac{h_e}{h}}} \right\}$$
 Eq 6.

With: $7A\sqrt{\frac{h\varepsilon}{1-\frac{h\varepsilon}{h}}}$ in N

• For SDED/G, BSN2P

$$R_{2,k} = \min \left\{ n_{J} \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_{H}R_{lat,H,k}}\right)^{2} + \left(\frac{1}{k_{H,2}R_{ax,H,k}}\right)^{2}}}; 14 \times 0,75 \times A \sqrt{\frac{h_{e}}{1 - \frac{h_{e}}{h}}} \right\}$$
Eq 7.

• For GLE/I and GLE/I-AL

$$R_{2,k} = \min \left\{ c_3 \cdot n_J \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H,2} R_{ax,H,k}}\right)^2}} \right\}$$
 Eq 8.

With: $c_3 = 0.9$

• For HGUS

$$R_{2,k} = \min \left[n_J \cdot k_{J,ef} \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H \cdot R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H2} \cdot R_{ax,H,k}}\right)^2}} \right]$$
 Eq 9.

Refer to Eq 3. for values of $k_{J,ef}$

• For MF

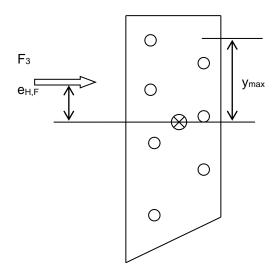
$$R_{2,k} = \min \left[2, 2 \cdot R_{lat,J,k}; \frac{1}{\sqrt{\left(\frac{1}{n_H \cdot R_{lat,H,k}}\right)^2 + \left(\frac{1}{k_{H2} \cdot R_{ax,H,k}}\right)^2}} \right]$$
 Eq 10.

C4.1.1.3 F₃ load direction:

• For all joist hangers except BSNN, SBG, SLE, SBE and SDED/G:

The capacity from the nails in the joist

$$R_{3,k} = \frac{n_J \cdot R_{lat,J,k}}{\sqrt{\left(\frac{2\sqrt{e_{J,F}^2 + e_{J,nail}^2}}{A}\right)^2 + \left(\frac{R_{lat,J,k}}{R_{ax,J,k}}\right)^2}}$$
Eq 11.


The capacity from the nails in the header

$$R_{3,k} = \frac{R_{lat,H,k}}{\sqrt{\left(\frac{1}{n_H} + \frac{e_{H,F} \cdot H^*}{2I_{p,H}}\right)^2 + \left(\frac{e_{H,F} \cdot W^*}{2I_{p,H}}\right)^2}}$$
 Eq 12.

The lateral capacity of the joist hanger is the minor of the capacity of the nails in the joist and the nails in the header.

• For BSNN, SBG, SLE and SBE:

$$R_{3,k} = \frac{\frac{1/2n_H R_{lat,H,k}}{1 + \frac{n_H e_{H,F} y_{\text{max}}}{2I_{p,fl}}} = k_{lat} R_{lat,H,k}$$
 Eq 13.

$$k_{lat} = \frac{n_H}{2 \times \left(1 + \frac{n_H \times e_{H,F} \times y_{\text{max}}}{2 \times I_{p,fl}}\right)}$$
 Eq 14.

If full nailing of all holes in the header flange is applied a contribution from the nails in the other flange can be added to the value of the above formula. This term is:

$$R_{3,k} = \frac{1}{2}n_J R_{ax,J,k}$$
 Eq 15.

• For SDED/G, BSN2P

The capacity of the SDED/G is given by the formula:

$$R_{3,k} = \frac{1}{2} \times \left(n_H \times R_{lat,H,K} + n_J \times R_{ax,H,K} \right) \times \left(-\frac{22}{9} \times 10^{-3} \times \text{Blank} + 1,636 \right) \times 0,65$$
 Eq 16.

C4.1.1.4 F₄ load direction:

In some cases, a solicitation of the joist can be applied in the F_4 direction. We can estimate the resistant capacity of the joist hanger by R_{ax} .

• For BSNN, BSIN, SAE, SAIX, SAI, SBE, SBG, SLE, GSE, GSE-AL, GSI, GSI-AL, GLE, GLE-AL, GLI and GLI-AL

$$R_{4,k} = \min \begin{cases} n_{J,eff} \times R_{lat,J,k} \times c_4 \\ n_{H,eff} \times R_{ax,H} \end{cases}$$
 Eq 17.

For BSNN, BSIN, SAE, SAIX, SAI, SBE, SBG, SLE, GLE and GLI $c_4 = 0.85$

For others: $c_4 = 1$

 $n_{H,eff}$ the number of nails in the first row close to the bending line

C4.1.2 Square twist nails or smooth round nails

C4.1.2.1 F₁ Load direction:

$$R_{1,k} = \min \left\{ n_{J,ef,1} \cdot R_{lat,J,k}; n_H \cdot R_{lat,H,k} \right\}$$
 Eq 18.

Where the following symbols, which have not been defined Annex CO are:

n_{J,ef,1} the effective number of nails in the side of the joist

C4.1.2.2 F₂ Load direction:

$$R_{2,k} = \min \left\{ n_{J,ef,2} \cdot R_{lat,J,k}; n_H \cdot R_{lat,H,k} \right\}$$
 Eq 19.

Where the following symbols, which have not been defined in Annex CO are:

 $n_{\rm J,ef,2}$ the effective number of nails in the side of the joist

C4.1.3 Bolts

C4.1.3.1 F₁ load direction:

• For GBE and GBI (with bolts in sides and flanges)

$$F_{j,k} = F_{c,90,k} + \gamma \times n_j \times F_{b,k,j}$$
Eq 20.

With:

 $F_{c.90.k}$ the capacity of the seat of the joist hanger depending of the timber used.

 γ the eccentricity factor

n_i the number of bolts in the joist

F_{b.k.j} the lateral capacity of one bolt of the joist (according to EN 1995-1-1)

$$F_{\text{tot.j.bear.k}} = 2 \times n_j \times \gamma$$

$$\times F_{\text{bear.i.k}}$$
Eq 21.

With:

F_{bear,i,k} the bearing resistance of the steel around the bolt in the joist

$$F_{h,k} = 2 \times k_{b,h} \times n_h \times F_{b,k,h}$$
 Eq 22.

With:

k_{b.h} the calibration factor

nh the number of bolts in the header

F_{b.k.h} the lateral capacity of one bolt on the header. (according to EN 1995-1-1)

$$F_{tot.h.bear.k} = 2 \times n_h \times F_{bear.h.k}$$
 Eq 23.

With:

F_{bear.h.k} the bearing resistance of the steel around the bolt in the header

The download capacity is defined as the minimum of this four failure mode:

 $R_{1.k} = min(F_{j.k}, F_{h.k}, F_{tot.h.bear.k}, F_{tot.j.bear.k})$

Eq 24.

• For GBE and GBI (with wood screws in sides and bolts in flanges)

 $F_{\text{j.screw.k}} \quad = \qquad \quad F_{\text{c.90.k}} + 2 \times \gamma_{\text{s}} \times n_{\text{s.j}} \times F_{\text{screw.k.j}}$

Eq 25.

With:

γ_s the eccentricity factor for screws

ns.i the number of screws in the joist

F_{screw.k.i} the lateral capacity of one screw in the joist (according to EN 1995-1-1)

 $R_{1.k.scr}$ = min ($F_{j.screw.k}$, $F_{h.k}$, $F_{tot.h.bear.k}$, $2 \times n_{s.j} \times F_{bear.sc.k}$)

Eq 26.

With:

 $F_{\text{bear.sc.k}}$ the bearing resistance of the steel around the screws on the joist

For F_{h,k} and F_{tot,h,bear,k} see "For GBE and GBI (with bolts in sides and flanges)"

C4.1.3.2 F₂ load direction:

• For GBE and GBI (with bolts in sides and flanges)

The uplift capacity is defined as the minimum of this four failure mode:

$$R_{2.k} = min (\gamma \times n_j \times F_{b.k.j}, F_{h.k}, F_{tot.h.bear.k}, F_{tot.j.bear.k})$$

Eq 27.

• For GBE and GBI (with wood screws in sides and bolts in flanges)

 $R_{2.k.scr}$ = min $(2 \times \gamma_s \times n_{s,j} \times F_{screw,k,j}, F_{h,k}, F_{tot,h,bear,k}, 2 \times n_{s,j} \times F_{bear,sc,k})$

Eq 28.

C4.1.3.3 F3 load direction:

• For GBE and GBI (with bolts in sides and flanges)

Capacity of the steel around the load application point:

 $F_{area.A} = 2 \times m_v \times a / e_{JH}$

Eq 29.

With:

my the moment capacity of the steel

a the distance found by test

eJH the distance between the header and the bolt in the joist

$$F_{area.B} = 2 \times a \times C \times F_{90}$$

Eq 30.

With:

C the contact length (=depth of the joist hanger) between the timber and the joist hangers F_{90} the compressive capacity of the timber joist

The lateral capacity is defined as:

$$R_{3,k} = F_{area,A} + F_{area,B}$$

Eq 31.

For GBE and GBI (with wood screws in sides and bolts in flanges)

Same as bolted connection.

C4.1.3.4 F₄ load direction:

• For GBE and GBI (with bolts in sides and flanges)

 $F_{j,lat,k} = n_j \times F_{b,lat,k,j}$ Eq 32.

With:

n_i the number of bolts in the joist

F_{b.lat.k.j} the lateral capacity of the bolt on the joist

 $F_{h.ax.k} = 2 \times n_h \times F_{ax.h.k}$ Eq 33.

With:

nh the number of bolts on each flange of the header

Fax.h.k the axial capacity of the bolt on the header

 $F_{k.ax.fl} = 2 \times M_{fl} / (d_{b.fl} - d_h/2)$ Eq 34.

With:

M_{fl} the moment capacity of the flange of the joist hangers

d_{b.fl} the distance between the side of the joist hanger and the bolt in the header

dh the diameter of the bolt used on the header

Axial capacity is defined as the minimum of the three previous failure mode

 $R_{4,k} = \min (F_{j,lat,k}, F_{h,ax,k}, F_{k,ax,f})$ Eq 35.

• For GBE and GBI (with wood screws in sides and bolts in flanges)

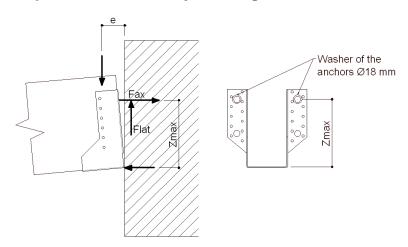
 $F_{j,lat,k} = 2 \times n_{s,j} \times F_{screw,k,j}$ Eq 36.

 $F_{h.ax.k} = 2 \times n_h \times F_{ax.h.k}$ Eq 37.

 $F_{k.ax.fl} = 2 \times M_{fl} / (d_{b.fl} - d_b/2)$ Eq 38.

Axial capacity is defined as the minimum of the three previous failure mode

 $R_{4.k} = \min (F_{j,lat.k}, F_{h.ax.k}, F_{k.ax.fl})$ Eq 39.


C4.2 Joist hangers on Rigid support

C4.2.1 General requirement

For joist hangers connected to a wall of concrete, lightweight concrete or to a steel member the assumptions for the calculation of the load-carrying capacity of the connection are:

- The Transfer of force from the joist to the joist hanger is as for a wood-wood connection.
- The bolts shall always be positioned symmetrically about the vertical axis of the joist hanger.
- For concrete, the bolts shall use washers recommended with the mechanical anchor delivery by the suppliers. Check it is a CE marked product with an ETA.
- For bolted application, washer ≥ Ø18 mm shall be installed under the upper bolt heads or nuts.

C4.2.2 Characteristic capacities of a bolted joist hanger connection

C4.2.2.1 F₁ load direction

For a **F1 load** the formulas for the characteristic load-carrying capacity of the joist hanger connection are:

• For all joist hangers except SDED/G, BSN2P, GSE, GSE-AL, GLE and GSEXL $R_{1.k} = \min\left[\left(n_i + 2\right) \times R_{lat.j.k}; n_b \times R_{lat.b.k}\right]$

Eq 40.

For type SBE, SBG and SLE, n_b = n_{ef.b}

• For SDED/G and BSN2P $R_{1,k} = \min \left[n_j \times R_{lat,j,k}, n_b \times R_{lat,b,k} \right] \qquad \text{for SDED/G}$ Eq 41.

• For GSE and GSE-AL with a blank model from 300 to 500

$$R_{1,k} = \min \left[c_5 \times (n_j + 2) \times R_{lat,j,k}; R_{bear,k} \right]$$
 Eq 42.

For GSE and GSE-AL with a blank model from 300 to 500, $c_5 = 0.9$

It must be checked that the combination of lateral and axial forces in the anchor bolt can be carried by these forces.

The maximum withdrawal force in a upper bolt can be calculated as follows:

$$F_{ax,bolt} = \frac{F_1 \cdot e}{2 \cdot z_{\text{max}}}$$
 Eq 43.

When connected to timber, z_{max} is reduced by 20 mm.

The upper two bolts are subjected to a combination of lateral and withdrawal forces. The lateral force is determined assuming an even distribution of the downward force F:

$$F_{lat,bolt} = \frac{F_1}{n_{holt}}$$
 Eq 44.

- This case is for face mount hangers connected to a wall of concrete or to a steel member.
- The bolts shall be positioned symmetrically about the vertical axis of the Face mount hanger.
- The nails in the joists are subjected to a lateral force, which is equally distributed over all nails or screws in the joist.
- The rotation point can be assumed to be positioned at the top of the bottom plate.
- The forces in the bolts are partly lateral forces, partly withdrawal forces.
- The lateral forces are distributed evenly over all bolts.
- The withdrawal forces are assumed to be taken by the 2 upper bolts with washers (30 x 30 x 3)

The bearing resistance between the bolt and the plate of the face mount hanger is given by the following equation :

$$R_{bear,k} = n_{bolt} \cdot f_{u,k} \cdot d_{hole} \cdot t_p$$
 Eq 45.

For GSEXL, GSE and GSE-AL with blank model from 540 to 1020, GLE and GLE-AL

In order to calculate value of GSE and GSEXL on concrete we compared 4 failure modes and take the most disadvantageous one.

$$F_{1,k} = \min\left\{F_{v,StT,Rk}; F_{Anet,Rk}; F_{v,sp,Rk}; F_{anchor,Rk}\right\}$$
 Eq 46.

Where:

 $F_{v,StT,Rk}$ is the resistance of the steel to timber connection

 $F_{Anet,Rk}$ is the resistance of the cross section in tension.

 $F_{v.sp.Rk}$ is the resistance of the bolt to steel connection

F_{anchor,Rk} is the resistance of the anchors group / bolts group in case of timber to timber connection

To find the design value, k_{mod} and γ_M must be applied on $F_{down,Rk}$ even if the failure is due to a steel failure. Indeed, it will always be on the safe side.

For a pair of half joist hangers SJH

Eq 47.

$$R_{1.k} = \min[n_j \times R_{f.lat.j.k}; R_{bear.k}]$$

On rigid support, the half hangers shall be set symmetrically on the joist.

The bearing resistance between the bolt and the plate of the face mount hanger is given by the following equation.

Eq 48.

$$R_{beark} = n_{bolt} \cdot f_{u,k} \cdot d_{hole} \cdot t_{p}$$

It must be checked that the combination of lateral and axial forces in the anchor bolt can be carried by these forces. It can be done with *Anchor Designer* by applying $F_{1.d}$ ($F_{2.d}$) and a moment $M_{1.d} = F_{1.d}^*e$ ($M_{2.d} = F_{2.d}^*e$) at rotation point at the lower (upper) edge of joist.

On the safe side, it can be considered that the maximum withdrawal force on an upper bolt can be calculated according to Eq 45 and Eq 46.

Failure mode: Steel to timber connection

The support reaction of the joist causes lateral loading of the fasteners in the joist connection and compression perpendicular to the grain in the contact area between bottom plate and joist. By taking into account the contribution of the bottom plate and the plastic behaviour of the fasteners, the characteristic steel-to-timber load capacity is:

$$F_{v,StT,Rk} = n_J \cdot F_{v,f,Rk} + F_{c,Rk}$$
 Eq 49.

Where:

 $F_{v,f,Rk}$ is the characteristic load-carrying capacity of the fasteners in the joist

 $F_{c,Rk}$ is the load-carrying capacity of the bottom plate taking into account the compression of the timber perpendicular to the grain and expressed as follows:

$$F_{c,Rk} = 4\sqrt{M_{y,Rk} \cdot A \cdot k_{c,90} \cdot f_{c,90,k}} \text{ with } M_{y,Rk} = \frac{f_{u,k} \cdot A \cdot t_p^2}{4}$$
 Eq 50.

For GLE-AL with width > 200 m, the width considered in the calculation is limited to 200 mm

Failure mode: Steel plate

Depending on the thickness of the steel plate, the characteristic load capacity $F_{v,sp,Rk}$ of the bolt-to-steel connection is designed according to EN 1993-1-8 (§3 table 3.4) for the 4 mm hanger and EN 1993-1-3 (§8.3 table 8.4) for the 2.5 mm hanger with the following modifications:

The tensile strength $F_{Anet,Rk}$ of the area A_{net} is calculated assuming a contribution of an effective width which is the actual width + 60 mm for each side of the hanger. According to Eurocode 3, the total effective area is then:

$$A_{net,ef} = 2 \cdot (2.e_2 - d_0 + 60) \cdot t_{cor}$$
 Eq 51.

Then, the load bearing capacity of the joist hanger is then:

$$F_{v,Rk} = \min \left\{ F_{v,StT,Rk}; F_{v,sp,Rk} \right\}$$
 Eq 52.

Failure mode: Anchor failure

The last failure mode is the failure of anchors/bolts in shear. For this failure mode, it must be checked that the group of anchors/bolts can resist to the load. To check the group anchor, the ETAG001 Annex C must be used.

The forces in the anchors/bolts will be partly lateral forces, partly withdrawal forces. The lateral forces are distributed equally over all anchors:

$$F_{anchor,lat,Rk} = \frac{F_{v,Ed}}{n_b}$$
 Eq 53.

Where:

 $F_{v,Ed}$ is downward directed force toward the bottom plate

The centre of rotation is assumed at the bottom plate of the joist hanger. For timber to timber connections via bolts, the centre of rotation is 20 mm above the bottom plate.

Withdrawal forces are on the safe side assumed to be taken by the 2 upper anchors with washers. The maximum withdrawal force in an upper anchor can be calculated from:

$$F_{anchogax,Rk} = \frac{F_{vEd} \cdot e}{2.z_{max}}$$
 Eq 54.

• For GBE and GBI (with bolts in sides and flanges)

$$F_{h.anch.k} = 2 \times k_{b.h} \times n_h \times F_{lat.anch.d}$$
 Eq 55.

With:

F_{lat.anch.d} the lateral capacity of the anchor

$$R_{1.k} = \min(F_{j.k}, F_{h.anch.k}, F_{tot.h.bear.k}, F_{tot.j.bear.k})$$
 Eq 56.

For the definition of the different value, see see "F1 load direction: For GBE and GBI (with bolts in sides and flanges)"

For GBE and GBI (with wood screws in sides and bolts in flanges)

$$R_{1-k.sc} = min(F_{j.screw.k}, F_{h.anch.k}, F_{tot.h.bear.k}, 2 \times n_{s.j} \times F_{bear.sc.k})$$
 Eq 57.

C4.2.2.2 F₂ Load direction

For an F₂ Load direction, the formula for the characteristic load-carrying capacity of the joist hanger connection is:

 For all the joist hangers excepted BSNN, SDED/G, BSN2P, SBE, SBG and SLE and GSE (Blank>500), GSE-AL (Blank>500), GLE, GLE-AL and GSEXL

$$R_{2,k} = \min \left| n_i \times R_{lat,i,k}; n_b \times R_{boltlat,k} \right|$$
 Eq 58.

For BSNN, SBG, SBE and SLE

The minimum of following formulas (Eq 37 + Eq 38)

If there is no reinforcing for splittering, the following formula is applied:

$$R_{2,k} = 7 \times A_{eff} \times \sqrt{\frac{h_e}{1 - \frac{h_e}{h}}}$$
 Eq 59.

The result of this calculation is in N.

• For SDED/G and BSN2P:

$$R_{2,k} = \min\left\{n_J \cdot R_{lat,J,k}; n_{ef,b} R_{bolt,lat,k}\right\}$$
 Eq 60.

• For GSE (Blank>500), GSE-AL (Blank>500), GLE, GLE-AL and GSEXL

$$R_{2,k} = \min \left\{ c_6 . F_{anchor,Rk}; c_6 \cdot n_H \cdot F_{v,f,Rk}; c_6 \cdot F_{v,Rk}; F_{Anet,Rk} \right\}$$

$$\mathbf{Eq 61.}$$

• For connection with 2 bolts for all joist hangers:

$$R_{2,k} = \frac{1}{\sqrt{\left(\frac{1}{n_J}\right)^2 + \left(\frac{\frac{2}{3}e_{J,nail} \times e_{center,x}}{I_{p,nail}}\right)^2}} \times R_{lat,nail,k}$$
 Eq 62.

The force in the anchor bolts are calculated analogous from formula (Eq 27) and (Eq 28).

• For GBE and GBI (with bolts in sides and flanges)

$$R_{2.k} = \min(\gamma \times n_j \times F_{b.k.j}, F_{h.anch.k}, F_{tot.h.bear.k}, F_{tot.j.bear.k})$$
Eq 63.

• For GBE and GBI (with wood screws in sides and bolts in flanges)

$$R_{2.k.sc} = min(2 \times \gamma_s \times n_{s.j} \times F_{screw.k.j}, F_{h.anch.k}, F_{tot.h.bear.k}, 2 \times n_{s.j} \times F_{bear.sc.k})$$
Eq 64.

For a pair of half joist hanger SJH

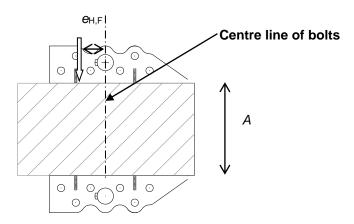
Eq 65.

$$R_{2,k} = \min[n_j \times R_{f,lat,j,k}; R_{bear,k}]$$

On rigid support, the half hangers shall be set symmetrically on the joist.

The bearing resistance between the bolt and the plate of the face mount hanger is given by the following equation.

Eq 66.


$$R_{bear,k} = n_{bolt} \cdot f_{u,k} \cdot d_{hole} \cdot t_p$$

Transversal tension in timber shall be checked according to Eq 59.

C4.2.2.3 F₃ load direction

Different formulas are used for joist hangers with 2 or 4 anchor bolts into the supporting structure of for example concrete or steel.

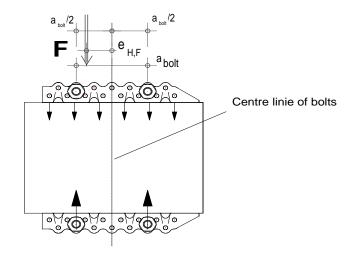
For all Joist hangers with 2 bolts except GSE, GSE-AL, GLE, GLE-AL and GSEXL

The minimum value of the following formulas and also formula [Eq.6] for the characteristic lateral load-carrying capacity of the joist hanger connection applies to a joist hanger with 2 bolts.

For small eccentricities e_{H.F}:

$$R_{3,k} = \frac{\frac{2R_{bolt,lat,k}}{R_{ax,J,k}^2} + \sqrt{\frac{4R_{bolt,lat,k}^2}{R_{ax,J,k}^4} - \left(4\frac{R_{bolt,lat,k}^2}{R_{ax,J,k}^2} - n_J^2\right) \left[\left(\frac{e_{H,F}}{AR_{lat,J,k}}\right)^2 + 1/R_{ax,J,k}^2\right]}}{2\left[\left(\frac{e_{H,F}}{AR_{lat,j,k}}\right)^2 + 1/R_{ax,J,k}^2\right]}$$
 Eq 67.

For larger eccentricities e_{H,F}:

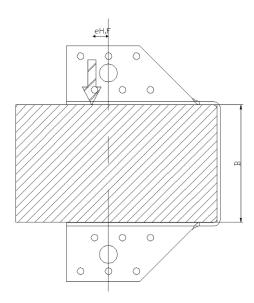

$$R_{3,k} = \frac{\frac{1}{2}An_J R_{lat,J,k}}{e_{H,F}}$$
 Eq 68.

where the symbols previously not defined are:

e_{H,F} is the eccentricity of the lateral force in relation to the centre of the bolts in each flange. It shall be taken as the numerical value of the eccentricity

R_{bolt,lat,k} See page 23

For all Joist hangers with 4 bolts except GSE, GSE-AL, GLE, GLE-AL and GSEXL

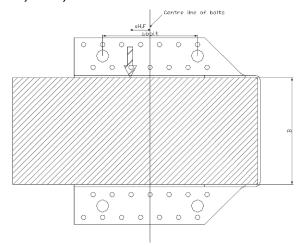


For a lateral force the formula for the characteristic load-carrying capacity of the joist hanger connection with 4 Ø10 mm bolts is:

$$R_{3,k} = \frac{a_{bolt} \times R_{bolt,lat,k}}{e_{H,F} + \frac{1}{2} a_{bolt}} + \frac{1}{2} n_J \times R_{ax,J,k}$$
 Eq 69.

where the symbols are defined in the previous text, also the limitation on the characteristic lateral capacity of a 10 mm bolt.

• For GSE, GSE-AL and GLE, GLE-AL with 2 bolts



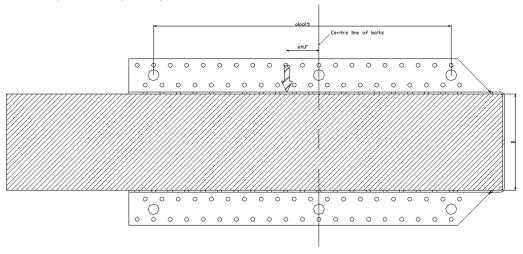
Provided the joist is prevented from rotation around its own axis, i.e. the force is acting right at the anchor bolts with $e_{H,F} = 0$ mm the characteristic lateral load-carrying capacity of the joist hanger connection with 2 Ø12 mm bolts is:

$$R_{3,k} = R_{\text{bolt,lat,k}}$$
 Eq 70.

Where R_{bolt,lat,k} is the resistance of one anchor in shear

• For GSE, GSE-AL, GLE, GLE-AL and GSEXL with 4 bolts:

Provided the force is acting between the anchors bolts the characteristic lateral load-carrying capacity of the joist hanger connection with 4 Ø12 mm bolts is:


$$R_{3,k} = \frac{a_{bolt}}{e_{H,F} + \frac{1}{2} a_{bolt}} R_{bolt,lat,k}$$
 Eq 71.

Where:

*a*_{bolt} is the distance between the two extreme bolts

e_{H.F} is the distance between application load and the centre line of the bolts

For GSE, GSE-AL, GLE, GLE-AL and GSEXL with 6 and 8 bolts:

Provided the force is acting between the outer anchor bolts and the force is acting $e_{H,F}$ from the middle anchor bolt the characteristic lateral load-carrying capacity of the joist hanger connection with 6 12 mm bolts is:

$$R_{3,k} = \frac{R_{bolt,lat,k}}{\frac{1}{3} + e_{H,F} / a_{bolt}}$$
 (6 bolts) $R_{3,k} = \frac{R_{bolt,lat,k}}{\frac{1}{4} + e_{H,F} / a_{bolt}}$ (8 bolts) Eq 72.

• For GBE and GBI (with bolts in sides and flanges)

Same as "F3 load direction: For GBE and GBI (with bolts in sides and flanges)"

• For GBE and GBI (with wood screws in sides and bolts in flanges)

Same as "F3 load direction: For GBE and GBI (with bolts in sides and flanges)"

C4.2.2.4 F₄ load direction

In some cases, a solicitation of the joist can be applied in the F_4 direction. We can estimate the resistant capacity of the joist hanger by R_{ax} .

• For BSNN, SAE, SAIX, SBE, SBG, SLE, GSE (2.5mm thick), GSE-AL (2.5 mm thick) and GLE (2.5 mm thick)

$$R_{4,k} = \min \begin{cases} n_J \times R_{lat,J,k} \\ 2.5 \times n_b \text{ kN} \end{cases}$$
 Eq 73.

For the type BSNN, SBE and SBG and SLE: $n_i = n_{J,ef}$

• GSE (4 mm thick), GSE-AL (4 mm thick), GLE (4 mm thick), GLE-AL (4 mm thick) and GSEXL

$$R_{4,k} = \min \begin{cases} n_J \times R_{lat,J,k} \\ 6.5 \times n_b \times c_7 \text{ kN} \end{cases}$$
 Eq 74.

 $c_{7}=0.8$

It must be checked that the external diameter of the washer is at least twice the diameter of the anchor or the bolt.

For GBE and GBI (with bolts in sides and flanges)

 $F_{h.anch.ax.k} = 2 \times n_h \times F_{ax.anch.d}$ Eq 75.

With:

F_{ax.anch.d} the axial capacity of the anchor

$$R_{4.k} = \min(F_{j.lat.k}, F_{h.anch.ax.k}, F_{k.ax.fl})$$
 Eq 76.

• For GBE and GBI (with wood screws in sides and bolts in flanges)

 $R_{4.k.sc} = min(2 \times n_{s,j} \times F_{screw.ax,j}, F_{h.anch.ax.k}, F_{k.ax.fl})$ Eq 77.

C4.3 Load combination

For a combination of forces in the vertical direction and in the lateral direction the following inequalities shall be fulfilled.

C4.3.1 - F₁ load direction and F₃ load direction

$$\left(\frac{F_{1,d}}{R_{1,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 \le 1,0$$
 Eq 78.

C4.3.2 - F₂ load direction and F₃ load direction

$$\left(\frac{F_{2,d}}{R_{2,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 \le 1,0$$
 Eq 79.

C4.3.3 – F₁ load direction, F₃ load direction and F₄ load direction

$$\left(\frac{F_{1,d}}{R_{1,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 + \left(\frac{F_{4,d}}{R_{4,d}}\right)^2 \le 1,0$$
 Eq 80.

C4.3.4 - F₂ load direction, F₃ load direction and F₄ load direction

$$\left(\frac{F_{2,d}}{R_{2,d}}\right)^2 + \left(\frac{F_{3,d}}{R_{3,d}}\right)^2 + \left(\frac{F_{4,d}}{R_{4,d}}\right)^2 \le 1,0$$
 Eq 81.

Factors $k_{H,1}$, $k_{H,2}$, $n_{J,ef,1}$ and $n_{J,ef,2}$ will be detailed in Annex D for each reference.

Effective number of nails $n_{\rm J,ef,1}$ and $n_{\rm J,ef,2}$ for joist hangers nailed with smooth round nails or square twist nails

The effective number of nails $n_{J,ef,1}$ and $n_{J,ef,2}$ shall be used for calculation of the load-carrying capacity of a wood-wood connection with smooth round nails or square twist nails subjected to a downward force towards the bottom plate, respectively an upward force away from the bottom plate.

C4.4 Straps hanger on timber

C4.4.1 Basis of Design

The design method detailed below for the JHA, THAI, AG703 and AG713 joist hangers has been validated by calculation assisted by testing method as defined in ETAG 015 and substantiated by BM TRADA Certification as part of the ETA assessment process.

The hanger characteristics needed to apply this method can be found in Annex D.

The designation of symbol is in Annex Co.

C4.4.2 Nail Capacities

The nail capacities are given in Annex C3 and have been validated against hanger test data.

They have had an efficiency factor applied as part of the design method validation and are only for use in conjunction with this ETA and the hangers listed in it.

C4.4.3 Hanger Characteristics

Hanger characteristics are given in Annex C4.

For hanger models not included in <u>Annex C4</u>, but within the scope of the ETA, reference should be made to the ETA holder for further information regarding the hanger characteristics.

C4.4.4 F₁ load direction

The load is transferred from the supported member (joist) to the supporting member (header) by:

- 1) Load transfer from the supported member to the hanger
- 2) Tension in the lower part of the hanger
- 3) Load transfer from the hanger to the supporting member.

Therefore, the capacity of the system is the minimum of the above three mechanisms:

$$R_{1.k} = Min \begin{cases} F_{Joist-Hanger} \\ F_{Hanger,Tension} \\ F_{Hanger-Header} \end{cases}$$
 Eq 82.

C4.4.5 Load Transfer from Joist to Hanger (FJoist-Hanger)

The force between joist and hanger per flange (F_{Joist-Hanger}) is:

$$F_{Joist-Hanger} = \frac{C_{eff} \times A \times f_{c,90,k^*}}{2}$$
 Eq 83.

Where from Eurocode 5

$$f_{c,90,k^*} = k_{c,90,joist} \times f_{c,90,joist}$$
 (kc,90,joist = 1.5)

When joists are installed with 75 mm long skewed nails, a contribution from these nails can be added to $F_{\text{Joist-Hanger}}$ to give:

$$F_{Joist-Hanger} = \frac{C_{eff} \times A \times f_{c,90,*}}{2} + \frac{n_{skewnail} \times F_{v,RK,joist}}{3}$$
 Eq 85.

C4.4.6 Characteristic tensile capacity of the lower part of the joist hanger (FHanger, Tension)

The tensile capacity per flange F_{Hanger, Tension} is:

$$F_{HangerTension} = \frac{S \times t_p \times f_{u,k}}{d}$$
 Eq 86.

When joists are installed with 75mm long skewed nails, a contribution from the skewed nails can be added to F_{Hanger, Tension} to give:

$$F_{HangerTension} = \frac{S \times t_p \times f_{u,k}}{d} + \frac{n_{skewnail} \times F_{v,RK,joist}}{3}$$
 Eq 87.

 ${\sf F}_{\sf Hanger,\, Tension}$ shall be reduced by 25% if the joist hanger is installed in an under slung installation.

C4.4.7 Load transfer from the hanger to the header – Face Fix Installation

When face-fixed, the force between header and hanger per flange is:

$$F_{\text{Hanger-Header}} = Min \begin{cases} F_{\text{Lat,nail}} \\ F_{\text{Ax,nail}} \end{cases}$$
 Eq 88.

The vertical load is shared between the total numbers of nails per flange:

$$F_{\text{Lat,nail}} = n_{\text{h, sidenail}} \times F_{\text{v,Rk,header}}$$
 Eq 89.

The axial force per flange in the nails is:

$$F_{Ax,nail} = \frac{F_{Ax,Rk,header} \times (a - 0.5a_c) \times n_{effax}}{2}$$
Eq 90.

When joists are installed with 75mm long skewed nails, a contribution from the skewed nails can be added, hence F_{hanger-Header} becomes:

$$F_{Header-Hanger} = Min \begin{cases} F_{Lat,nail} \\ F_{Ax,nail} \end{cases} + \frac{n_{skewnail} \times F_{v,RK,joist}}{3}$$
 Eq 91.

Smooth nails (round or square) shall fulfil the following criterion:

$$\left(\frac{F_{\text{Lat,nail}}}{F_{\text{V,Rk,header}}}\right) \le 1$$
 and $\left(\frac{F_{\text{Ax,nail}}}{F_{\text{ax,Rk,header}}}\right) \le 1$ Eq 92.

Ring shank nails shall fulfil the following criterion:

$$\left(\frac{F_{\text{Lat,nail}}}{F_{\text{V,Rk,header}}}\right)^2 + \left(\frac{F_{\text{Ax,nail}}}{F_{\text{ax,Rk,header}}}\right)^2 \le 1$$
Eq 93.

C4.4.8 Load transfer from the hanger to the header – Wrap over Installation

When wrapped-over, the force between header and hanger per flange is:

$$F_{\text{Hanger-Header}} = k_{\text{ef}} (F_{\text{c}} + F_{\text{r}}) + n_{\text{h.sidenail}} \times F_{\text{v.Rk,header}}$$
 Eq 94.

Where

$$F_{c} = t_{p} \sqrt{\frac{f_{u,k} \times f_{c,90k^*} \times l \times l_{eff}}{3}}$$
Eq 95.

$$F_{r} = n_{h,top \, nail} \times F_{v,Rk,header} - \frac{f_{u,k} \times l \times t_{p}^{2}}{6 \times C_{hor}}$$
Eq 96.

From Eurocode 5

$$f_{c,90,*} = k_{c,90,header} \times f_{c,90,header}$$
 (k_{c,90,header} = 1.0)

For instance where 75mm joist nails are used, a contribution from the skewed nails can be added, hence, F_{hanger-Header} becomes:

$$\mathsf{F}_{\mathsf{Hanger-Header}} = \mathsf{k}_{\mathsf{ef}} \big(\mathsf{F}_{\mathsf{c}} + \mathsf{F}_{\mathsf{r}} \big) + \mathsf{n}_{\mathsf{h,sidenail}} \times \mathsf{F}_{\mathsf{v},\mathsf{Rk},\mathsf{header}} + \frac{\mathsf{n}_{\mathsf{skewnail}} \times \mathsf{F}_{\mathsf{v},\mathsf{RK},\mathsf{joist}}}{3}$$
 Eq 98.

C4.4.9 F₂ load direction

For uplift force, the load is transferred from the joist into the hanger by the nails in the side of the joist.

For skew nails with a length of 75 mm or greater, the load may also be transferred directly from the joist into the header.

For instances where nails with a length of 30 to 38 mm are inserted perpendicular to the joist the uplift capacity is:

$$F_{2k} = 0.6 \times n_{\rm I} \times F_{\rm Lat\,RK\,Ioist}$$
 Eq 99.

When nails with a length of 75 mm are inserted skew to the joist the uplift capacity is:

$$F_{2.k} = \frac{n_{skewnail} \times F_{Lat,RK,Joist}}{3}$$
 Eq 100.

Where:

$$F_{Lat,RK,Joist}$$
 is the characteristic lateral capacity of the nails in the joist

C4.4.10 I-beam as headers

If an I-beam is used as a header, a backer block must be installed between the joist hanger and the web. The backer shall fulfill the following criteria:

- The block shall fit tight to the underside of the top flange (Annex B4)
- The surface of the block shall be flush with the side of the flange
- The nails in the backer block shall be of sufficient length so that they go through the web and clinched.
- It is required that the number of nails in the backer block shall be determined from:

$$n_{nail, backer} = 2(n_{web} \times 2n_{topflange})$$

C4.5 Straps hangers on rigid support

C4.5.1 Basis of Design

The design method detailed below for the THAI1200 joist hangers has been validated by calculation assisted by testing method as defined in ETAG 015.

The hanger characteristics needed to apply this method can be found in Annex D.

The designation of symbol is in Annex CO.

C4.5.2 Nail Capacities

The nail capacities are given in Annex C3 and have been validated against hanger test data.

They have had an efficiency factor applied as part of the design method validation and are only for use in conjunction with this ETA and the hangers listed in it.

C4.5.3 Hanger Characteristics

Hanger characteristics are given in Annex C4.

C4.5.4 F₁ load direction – Face fix installation

The load is transferred from the supported member (joist) to the supporting member (header) by:

- 1) Load transfer from the supported member to the hanger
- 2) Tension in the lower part of the hanger
- 3) Load transfer from the hanger to the supporting member.

Therefore, the capacity of the system is the minimum of the above three mechanisms:

Eq 101.

$$R_{1.k} = Min \left\{ \begin{array}{l} F_{Joist-Hanger} \\ \\ F_{\textit{Hanger-Tension}} \\ \\ F_{Hanger-Header} \end{array} \right.$$

With:

F_{jois-hanger} calculated from Eq83.

Fhanger-Tension calculated from Eq86.

F_{Hanger-Header} checked by the user by checking that the anchor bolts can carry the combination of axial and lateral forces.

Maximum withdrawal force in a upper bolt can be calculated as follows:

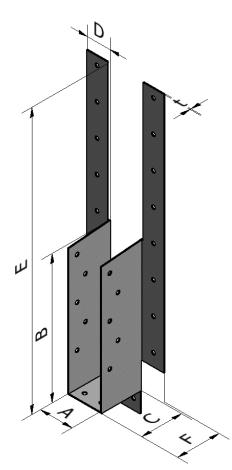
Eq 102.

$$F_{ax.bolt} = \frac{F_1 \times e}{2 \times z_{max}}$$

The upper two bolts are subjected to a combination of lateral and withdrawal forces. Lateral force is determined assuming an even distribution of the downward force F:

Eq 103.

$$F_{lat.bolt} = \frac{F_1}{n_{bolt}}$$


ANNEX D PRODUCT DEFINITION AND CAPACITIES

D1 AG703 Straps hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
AG703	Steel ref 1 - Steel ref 2	-

Dimensions

	Dimensions [mm]										Holes				
Blank		Dimensions [mm]									Joist				
	Α	В	C	D	E	F	t	Qty	Size	Qty	Size				
AG703	36-98	(344-A)/2	48	26.2	(680-A)/2	49.2	1.2	16	Ø4.5	10	Ø4.5				
Permitted deviation	-	-	±1.0	±1.0		±1.0	-	-	-	-	-				

Parameters have to be used with equation in Annex C

Parameters for AG703 - F1 - timber to timber

Model	I	l _{ef}	S	B _{eff}	a-0.5a _c	е	C _{hor}	k ef	d	n _{eff} (per flange)
AG703/38	25	74	25	78	143	26	10	1.04	1	6
AG703/45	25	78	25	78	143	26	10	1.04	1	6
AG703/58	25	84	25	76.1	143	26	10	1.04	1	6
AG703/64	25	85	25	74.6	143	26	10	1.04	1	6
AG703/76	25	85	25	71.8	143	26	10	1.04	1	6
AG703/89	25	85	25	68.6	143	26	10	1.04	1	6
AG703/98	25	85	25	66.5	143	26	10	1.04	1	6

Page 60 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07


			ng Timber eners	Supported Timber Fasteners	
Hanger Type	Installation Configuration	ARS 3	3.1x35		
		Тор	Face	ARS 3.1	
AG703	Face Fix	-	16	4	
AG703	Wrap Over	4	2	4	

D2 AG713 Straps hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
AG713	Steel ref 1 - Steel ref 2	-

Dimensions

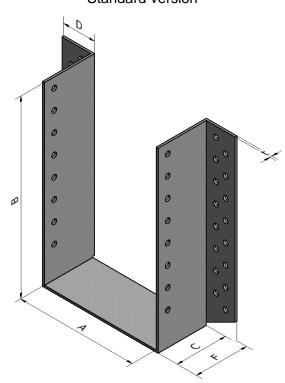
		Holes									
Blank		Dimensi		Heade	r	Joist					
	A	В	С	D	E	F	t	Qty	Size	Qty	Size
AG713	80-100	(300-A)/2	58	30	(970-A)/2	61.5	1.5	84	Ø5	18	Ø5
Permitted deviation	-	-	±1.0	±1.0		±1.0	-	1	ı	1	-

Parameters have to be used with equation in Annex C.

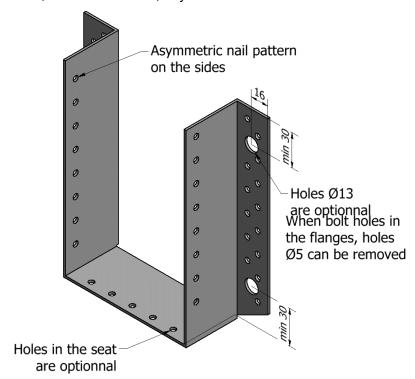
Parameters for AG713 - F1 - timber to timber

Model	I	l _{ef}	S	B _{eff}	a-0.5a _c	е	C _{hor}	k ef	d	n _{eff} (per flange)
AG713/80	30	90	30	81	232.5	33.5	10	0.65	1	4
AG713/90	30	90	30	78	232.5	33.5	10	0.65	1	4
AG713/100	30	90	30	75	232.5	33.5	10	0.65	1	4

	Installation	Supporting Tir	mber Fasteners	Supported Timber Fasteners
Hanger Type	Configuration	ARS	S 50	
		Тор	Face	ARS 4.0x50
AC712	Face Fix	-	20	4
AG713	Wrap Over	4	2	4


D3 BSD Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSD	Steel ref 1 - Steel ref 2	-


Dimensions

		D:	mana	iono Im	1				Н	oles		
		DI	mens	ions [m	1111]			ŀ	Header		Joist	
	Α	В	С	D	F	Т	Qty	Size	Qty	Size	Qty	Size
BSD A/100	34 - 250	100	50	30 + t	50 + t	2,0 - 2.5 - 3,0	16	Ø5			8	Ø5
BSD A/120	34 - 250	120	50	30 + t	50 + t	2,0 - 2.5 - 3,0	20	Ø5		up to Ø13	10	Ø5
BSD A/140	34 - 250	140	50	30 + t	50 + t	2,0 - 2.5 - 3,0	24	Ø5			12	Ø5
BSD A/160	34 - 250	160	50	30 + t	50 + t	2,0 - 2.5 - 3,0	28	Ø5			14	Ø5
BSD A/180	34 - 250	180	50	30 + t	50 + t	2,0 - 2.5 - 3,0	32	Ø5			16	Ø5
BSD A/200	34 - 250	200	50	30 + t	50 + t	2,0 - 2.5 - 3,0	36	Ø5	anasial		18	Ø5
BSD A/220	34 - 250	220	50	30 + t	50 + t	2,0 - 2.5 - 3,0	40	Ø5	special		20	Ø5
BSD A/240	34 - 250	240	50	30 + t	50 + t	2,0 - 2.5 - 3,0	44	Ø5			22	Ø5
BSD A/260	34 - 250	260	50	30 + t	50 + t	2,0 - 2.5 - 3,0	48	Ø5			24	Ø5
BSD A/280	34 - 250	280	50	30 + t	50 + t	2,0 - 2.5 - 3,0	52	Ø5			26	Ø5
BSD A/300	34 - 250	300	50	30 + t	50 + t	2,0 - 2.5 - 3,0	56	Ø5			28	Ø5
BSD A/320	34 - 250	320	50	30 + t	50 + t	2,0 - 2.5 - 3,0	60	Ø5			30	Ø5
Permitted deviation	±1.5	±1.5	±1.5	±1.5	±1.5	-	-	-	-	-	-	-

Standard version

Special version - bolt holes, holes in the seat, asymmetric holes in the sides

Some cutted holes may appear at the bottom and top of the flanges. They are not used for fasteners

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger BSD and BSDI - Full nailing - F1

	50 mm ≤ A ≤ 250 mm										
	symmet	ric na	ail pat	tern							
В	k _{H,1}	n _H	nJ	R ¹							
100	14.2	16	8	40							
120	20.8	20	10	50							
140	28.6	24	12	60							
160	37.7	28	14	70							
180	48.1	32	16	80							
200	59.7	36	18	90							
220	72.6	40	20	100							
240	86.7	44	22	110							
260	102.1	48	24	120							
280	118.7	52	26	130							
300	136.6	56	28	140							
320	155.8	60	30	150							

In the case of intermediate width, $k_{H,1}$ can be calculated by linear interpolation. $k_{H,1}$ value can be used both for column and beam.

	34 mm ≤ A ≤ 250 mm asymmetric nail pattern						
В	k _{H,1}	n _H	nJ	R¹			
100	14.5	4	7	40			
120	21.0	6	9	50			
140	28.9	8	11	60			
160	38.0	10	13	70			
180	48.3	12	15	80			
200	60.0	14	17	90			
220	72.8	16	19	100			
240	87.0	18	21	110			
260	102.3	20	23	120			
280	119.0	22	25	130			
300	136.9	24	27	140			
320	156.0	26	29	150			

In the case of intermediate width, $k_{H,1}$ can be calculated by linear interpolation. $k_{H,1}$ value can be used both for column and beam.

k_{H,1} for Joist Hanger BSD and BSDI - Partial nailing - F1

	50 mm ≤ A ≤ 250 mm								
	symm	symmetric nail pattern							
В	k _{H,1} n _H n _J R ¹								
100	9.5	8	4	30					
120	12.8	10	6	50					
140	17.6	12	6	50					
160	22.2	14	8	70					
180	28.3	16	8	70					
200	34.2	18	10	90					
220	41.5	20	10	90					
240	48.6	22	12	110					
260	57.2	24	12	110					
280	65.6	26	14	130					
300	75.4	28	14	130					
320	85.0	30	16	150					

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation. $k_{\text{H},1}$ value can be used both for column and beam.

	34 mm ≤ A ≤ 250 mm							
	asymn	etric	nail pa	attern				
В	k _{H,1}	n _H	nJ	R¹				
100	9.5	8	4	35				
120	13.2	10	5	46				
140	17.6	12	6	55				
160	22.7	14	7	66				
180	28.3	16	8	75				
200	34.6	34.6 18 9 86						
220	41.5	20	10	95				

Page 66 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

240	49.1	22	11	105
260	57.2	24	12	115
280	66.0	26	13	125
300	75.4	28	14	135
320	85.5	30	15	145

In the case of intermediate width, $k_{H,1}$ can be calculated by linear interpolation. $k_{H,1}$ value can be used both for column and beam

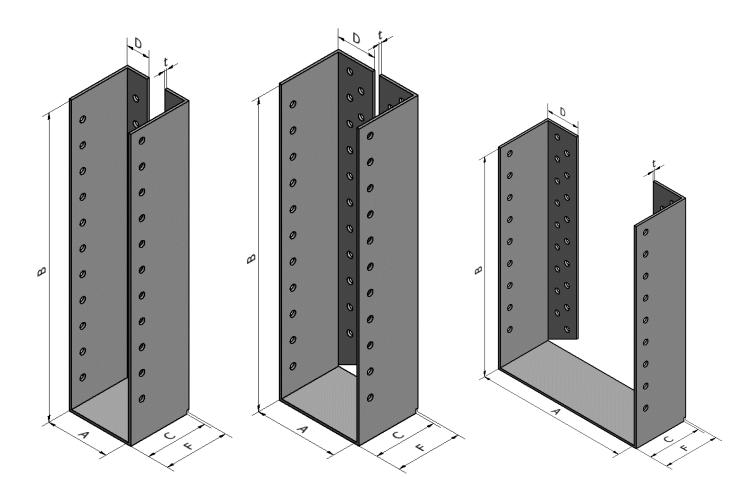
 $k_{H,2}$ for BSD and BSDI - 34 mm \leq A \leq 250 mm - Full or partial nailing - F2

Blank		per of nails header	k _{H2}		
	Full nailing	Partial nailing	Full nailing	Partial nailing	
BSD A/100	16	8	14,8	7,1	
BSD A/120	20	10	21,6	10,4	
BSD A/140	24	12	29,6	14,3	
BSD A/160	28	14	38,9	18,8	
BSD A/180	32	16	49,4	24,0	
BSD A/200	36	18	61,2	29,8	
BSD A/220	40	20	74,2	36,2	
BSD A/240	44	22	88,5	43,3	
BSD A/260	48	24	104,0	51,0	
BSD A/280	52	26	120,8	59,3	
BSD A/300	56	28	138,8	68,2	
BSD A/320	60	30	158,1	77,8	

k_{H,2} value can be used both for column and beam

 $n_{j,ef,1}$ and $n_{j,ef,2}$ for BSD and BSDI - 34 mm \leq A \leq 250mm - Full or partial nailing - F1 or F2

Diamir		nber of nails ne joist		F1	F2		
Blank	Full nailing	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing	
	ruii naiiing	Partial fialling	n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,1} n _{J,ef,2} n _{J,ef,2}		
BSD A/100	7	4	2,8	0,95	2,69	0,93	
BSD A/120	9	5	4,56	3,35	4,3	3,02	
BSD A/140	11	6	6,83	4,04	6,29	3,49	
BSD A/160	13	7	9,41	6,16	8,48	5,21	
BSD A/180	15	8	12,17	6,58	10,79	5,46	
BSD A/200	17	9	14,98	9,37	13,13	7,56	
BSD A/220	19	10	17,79	9,55	15,47	7,66	
BSD A/240	21	11	20,55	12,57	17,8	9,91	
BSD A/260	23	12	23,24	12,59	20,1	9,92	
BSD A/280	25	13	25,86	15,58	22,37	12,2	
BSD A/300	27	14	28,4	15,52	24,62	12,17	
BSD A/320	29	15	30,88	18,37	26,84	14,43	


D4 BSDI Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSDI	Steel ref 1 - Steel ref 2	-

Dimensions

Dimensions			Dim	onciona	[mm]			Holes		
			Dime	ensions	lmmj		Hea	ader	Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty*	Size
BSDI A/100	34 - 59	100	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	8	Ø5	7	Ø5
BSDI A/120	34 - 59	120	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	10	Ø5	9	Ø5
BSDI A/140	34 - 59	140	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	12	Ø5	11	Ø5
BSDI A/160	34 - 59	160	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	14	Ø5	13	Ø5
BSDI A/180	34 - 59	180	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	16	Ø5	15	Ø5
BSDI A/200	34 - 59	200	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	18	Ø5	17	Ø5
BSDI A/220	34 - 59	220	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	20	Ø5	19	Ø5
BSDI A/240	34 - 59	240	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	22	Ø5	21	Ø5
BSDI A/260	34 - 59	260	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	24	Ø5	23	Ø5
BSDI A/280	34 - 59	280	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	26	Ø5	25	Ø5
BSDI A/300	34 - 59	300	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	28	Ø5	27	Ø5
BSDI A/320	34 - 59	320	50	17.5 + t	50 + t	2.0 - 2.5 - 3.0	30	Ø5	29	Ø5
BSDI A/100	60 - 250	100	50	30 + t	50 + t	2.0 - 2.5 - 3.0	16	Ø5	8	Ø5
BSDI A/120	60 - 250	120	50	30 + t	50 + t	2.0 - 2.5 - 3.0	20	Ø5	10	Ø5
BSDI A/140	60 - 250	140	50	30 + t	50 + t	2.0 - 2.5 - 3.0	24	Ø5	12	Ø5
BSDI A/160	60 - 250	160	50	30 + t	50 + t	2.0 - 2.5 - 3.0	28	Ø5	14	Ø5
BSDI A/180	60 - 250	180	50	30 + t	50 + t	2.0 - 2.5 - 3.0	32	Ø5	16	Ø5
BSDI A/200	60 - 250	200	50	30 + t	50 + t	2.0 - 2.5 - 3.0	36	Ø5	18	Ø5
BSDI A/220	60 - 250	220	50	30 + t	50 + t	2.0 - 2.5 - 3.0	40	Ø5	20	Ø5
BSDI A/240	60 - 250	240	50	30 + t	50 + t	2.0 - 2.5 - 3.0	44	Ø5	22	Ø5
BSDI A/260	60 - 250	260	50	30 + t	50 + t	2.0 - 2.5 - 3.0	48	Ø5	24	Ø5
BSDI A/280	60 - 250	280	50	30 + t	50 + t	2.0 - 2.5 - 3.0	52	Ø5	26	Ø5
BSDI A/300	60 - 250	300	50	30 + t	50 + t	2.0 - 2.5 - 3.0	56	Ø5	28	Ø5
BSDI A/320	60 - 250	320	50	30 + t	50 + t	2.0 - 2.5 - 3.0	60	Ø5	30	Ø5
Permitted deviation	±1.5	±1.5	±1.5	±1.5		-	-	-	-	-

^{*}Optional holes can be made on the seat

Parameters have to be used with equation in Annex C.

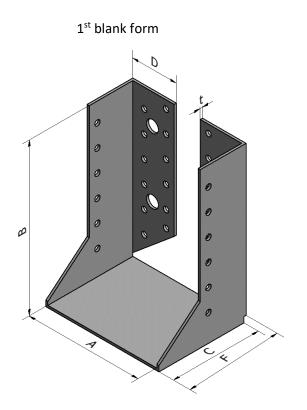
k_{H,1} for Joist Hanger BSDI - Full nailing - F1

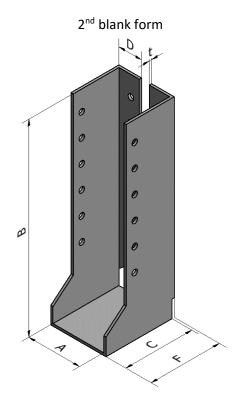
See Annex D3 BSD Joist Hanger

$k_{\text{H,1}}$ for Joist Hanger BSDI - partial nailing - F1

See Annex D3 BSD Joist Hanger

$k_{\text{H,2}} \, \text{for BSDI}$ - Full or partial nailing - F2

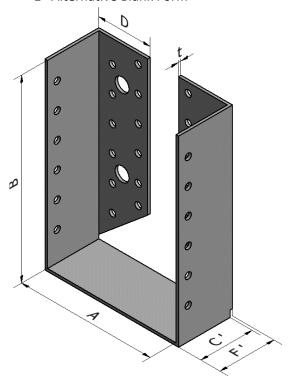

See Annex D3 BSD Joist Hanger

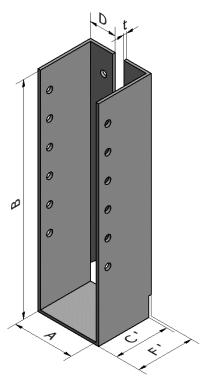

D5 BSI Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSI	Steel ref 1 - Steel ref 2	-

Dimensions

				Dimo	noion	a Ima	.1					Н	oles		
	Blank		Dimensions [mm]							Header				Joist	
		Α	В	С	C'	D	F	F'	Т	Qty	Size	Qty	Size	Qty	Size
	280	100	90	78	45.5	40	80	47.5	2 - 2.5 - 3	14	Ø5	2	Ø11	8	Ø5
ے	320	76 – 80	(320-A)/2	78	45.5	40	80	47.5	2 - 2.5 - 3	20	Ø5	4	Ø11	10	Ø5
1st blank form	358	120	119	85	45.5	42	87	47.5	2 - 2.5 - 3	18	Ø5	4	Ø11	10	Ø5
ank	380	76 – 101	(380-A)/2	78	45.5	40	80	47.5	2 - 2.5 - 3	24	Ø5	4	Ø11	12	Ø5
st bla	418	140	139	82.5	45.5	39	84.5	47.5	2 - 2.5 - 3	22	Ø5	4	Ø11	12	Ø5
7	435	80 – 120	(435-A)/2	85	45.5	42	87	47.5	2 - 2.5 - 3	26	Ø5	6	Ø11	14	Ø5
	500	74 - 140	(500-A)/2	82.5	45.5	39	84.5	47.5	2 - 2.5 - 3	30	Ø5	6	Ø11	16	Ø5
	238	38 – 60	(238-A)/2	53.5	45.5	20	55.5	47.5	2 - 2.5 - 3	8	Ø5	-	-	4	Ø5
2 nd blank form	260	38 – 64	(260-A)/2	53.5	45.5	20	55.5	47.5	2 - 2.5 - 3	8	Ø5	-	-	4	Ø5
Jk fc	320	38 – 81	(320-A)/2	58.5	45.5	20	60.5	47.5	2 - 2.5 - 3	10	Ø5	-	-	10	Ø5
blar	380	38 – 101	(380-A)/2	58.5	45.5	20	60.5	47.5	2 - 2.5 - 3	12	Ø5	-	-	12	Ø5
2nd	435	38 – 120	(435-A)/2	85	45.5	22	87	47.5	2 - 2.5 - 3	14	Ø5	-	-	14	Ø5
	500	38 – 140	(500-A)/2	82.5	45.5	19	84.5	47.5	2 - 2.5 - 3	16	Ø5	-	-	16	Ø5
	Permitted deviation	-	-	±1.0	±1.0	±1.0	±1.0	±1.0	-	1	-	1	-	-	-





Page 70 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

1st Alternative Blank Form

Parameters have to be used with equation in Annex C.

 $k_{\text{H},1} \, \text{for Joist Hangers type BSI - Full nailing - F1}$

See BSN Joist hanger

k_{H,1} for Joist Hangers type BSI - Partial nailing - F1

See BSN Joist hanger

 $k_{\text{H},2}$ for BSI - Full or partial nailing - F2

	Blank		nber of nails header		k _{H2}
		Full nailing	Partial nailing	Full nailing	Partial nailing
ш	380	20	10	25.5	14.6
k fo	380	24	12	35	19.7
1st blank form	435	26	14	36.7	20.3
1 st	500	30	16	44.9	25
	238	8	-	10	-
E	260	8	-	10	-
2 nd blank form	320	10	-	12.8	-
blar	380	12	-	17.6	-
2nd	435	14	-	20.3	-
	500	16	-	25.5	-

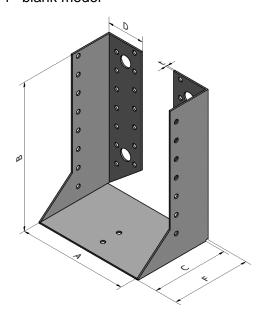
Page 71 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

$n_{j,\text{ef},1}$ and $n_{j,\text{ef},2}$ for BSI - Full or partial nailing - F1 or F2

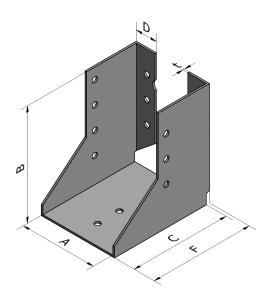
	Diank		nber of nails ne joist		F1	F2		
	Blank	Full poiling	Dortiel neiling	Full nailing	Partial nailing	Full nailing	Partial nailing	
		Full nailing	Partial nailing	n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	$n_{ m J,ef,2}$	
ш	380	10	6	5.45	4.01	5.02	3.47	
Ā 5	380	12	6	8.04	5.43	7.19	4.27	
1 st blank form	435	14	8	9.87	6.47	8.81	5.39	
1st	500	16	8	12.58	6.84	11.07	5.6	
	238	8	•	3.91	-	3.63	-	
E	260	8	-	3.91	-	3.63	-	
Ā f	320	10	-	5.45	-	5.02	-	
2 nd blank form	380	12	-	8.04	-	7.19	-	
2nd l	435	14	-	9.87	-	8.81	-	
	500	16	-	12.58	-	11.07	-	

D6 BSIN Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSIN	Steel ref 1 - Steel ref 2	-

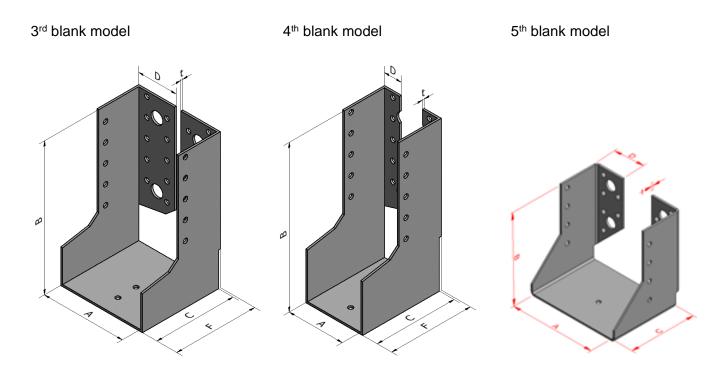

Dimensions - Table a

Blank sizes for BSIN A/B are equal to A + 2 * B


The table below is valid for all BSIN except for the specific sizes listed in *Table b*.

		Dimensions [mm]						Holes					
	Blank	Dimensions [mm]					Header				Joist		
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
1st blank model	200	64-80	(200-A)/2	76	33.5	82	2	6	Ø5	2	Ø12	4	Ø5
	250	64-80	(250-A)/2	76	33.5	82	2	10	Ø5	2	Ø12	6	Ø5
	300	64-80	(300-A)/2	76	33.5	82	2	16	Ø5	4	Ø12	9	Ø5
	340	64-120	(340-A)/2	76	33.5	82	2	16	Ø5	4	Ø12	10	Ø5
	380	64-120	(380-A)/2	76	33.5	82	2	20	Ø5	4	Ø12	12	Ø5
	440	64-120	(440-A)/2	76	33.5	82	2	26	Ø5	4	Ø12	15	Ø5
	500	64-120	(500-A)/2	76	33.5	82	2	32	Ø5	6	Ø12	18	Ø5
2 nd blank model	200	38-63	(200-A)/2	76	17.5	82	2	4	Ø5	-	-	4	Ø5
	250	38-63	(250-A)/2	76	17.5	82	2	6	Ø5	-	-	6	Ø5
	Permitted deviation	-	-	±1.0	±1.0	±1.0	1	-	-	-	-	-	-

1st blank model


2nd blank model

Dimensions - Table b

The table below is only valid for specific sizes listed in first column.

			Dimension [mm]							Но	les		
Туре	Blank model								Header				Joist
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
BSIN45/127	4 th blank model	45	127	84	18.5	86	2	8	Ø5	-	-	8	Ø5
BSIN48/126	4 th blank model	48	126	84	18.5	86	2	8	Ø5	ı	ı	8	Ø5
BSIN100/100	3 rd blank model	100	100	84	41.5	86	2	16	Ø5	4	Ø13	8	Ø5
BSIN100/100	5 th blank model	100	100	76	34.0	80	2	12	Ø5	4	Ø12	8	Ø5
BSIN48/166	4 th blank model	48	166	84	18.5	86	2	10	Ø5	-	-	10	Ø5
BSIN60/160	4 th blank model	60	160	84	18.5	86	2	10	Ø5	-	-	10	Ø5
BSIN140/120	3 rd blank model	140	120	84	41.5	86	2	20	Ø5	4	Ø13	10	Ø5
BSIN140/180	3 rd blank model	140	180	84	41.5	86	2	32	Ø5	6	Ø13	16	Ø5

Page 74 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger BSIN 1st blank model - Full nailing - F₁

KH,1 101		200		250		00		9 1 40	2	80	1	40	5	00
	İ						ĺ							
	nн	nJ	nн	nJ	n _H	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ
	6	4	10	6	16	9	16	10	20	12	26	15	32	18
Α	В	k _{H,1}	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1
64	68	6.3	93	11.8	118	21.5	138	29.1	158	39.1	188	58.1	218	77.3
66	67	6.1	92	11.5	117	21.1	137	28.7	157	38.6	187	57.5	217	76.6
68	66	5.9	91	11.2	116	20.7	136	28.3	156	38.2	186	56.9	216	75.8
70	65	5.7	90	10.9	115	20.3	135	27.9	155	37.7	185	56.3	215	75.1
72	64	5.5	89	10.7	114	20.0	134	27.5	154	37.2	184	55.7	214	74.4
74	63	5.3	88	10.4	113	19.6	133	27.1	153	36.7	183	55.1	213	73.7
76	62	5.2	87	10.1	112	19.2	132	26.7	152	36.2	182	54.5	212	73.0
78	61	5.0	86	9.9	111	18.9	131	26.3	151	35.8	181	53.9	211	72.3
80	60	4.8	85	9.6	110	18.5	130	25.9	150	35.3	180	53.3	210	71.6
82	-	-	-	-	-	-	129	25.5	149	34.8	179	52.7	209	70.9
84	-	-	-	-	-	-	128	25.1	148	34.3	178	52.1	208	70.2
86	-	-	-	-	-	-	127	24.7	147	33.9	177	51.5	207	69.5
88	-	-	-	-	-	-	126	24.3	146	33.4	176	50.9	206	68.8
90	-	-	-	-	-	-	125	23.9	145	32.9	175	50.3	205	68.2
92	-	-	-	-	-	-	124	23.5	144	32.5	174	49.7	204	67.5
94	-	-	-	-	-	-	123	23.1	143	32.0	173	49.1	203	66.8
96	-	-	-	-	-	-	122	22.7	142	31.5	172	48.6	202	66.1
98	-	-	-	-	-	-	121	22.4	141	31.1	171	48.0	201	65.4
100	-	-	-	-	-	-	120	22.0	140	30.6	170	47.4	200	64.8
102	-	-	-	-	-	-	119	21.6	139	30.2	169	46.8	199	64.1
104	-	-	-	-	-	-	118	21.2	138	29.7	168	46.3	198	63.4
106	-	-	-	-	-	-	117	20.8	137	29.3	167	45.7	197	62.7
108	-	-	-	-	-	-	116	20.5	136	28.8	166	45.1	196	62.1
110	-	-	-	-	-	-	115	20.1	135	28.4	165	44.6	195	61.4
112	-	-	-	-	-	-	114	19.7	134	27.9	164	44.0	194	60.7
114	-	-	-	-	-	-	113	19.3	133	27.5	163	43.4	193	60.1
116	-	-	-	-	-	-	112	19.0	132	27.0	162	42.9	192	59.4
118	-	-	-	-	-	-	111	18.6	131	26.6	161	42.3	191	58.8
120	-	-	-	-	-	-	110	18.3	130	26.2	160	41.8	190	58.1

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 75 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

k_{H,1} for Joist Hanger BSIN 2nd blank model - Full nailing - F₁

	Olst Hai			Dialik
	20	0	2	50
	n_H	n_J	n_H	nJ
	4	4	6	6
Α	В	k _{H,1}	В	k _{H,1}
38	81	5,1	106	8,1
40	80	5,0	105	8,0
42	79	4,9	104	7,8
44	78	4,8	103	7,6
46	77	4,6	102	7,5
48	76	4,5	101	7,3
50	75	4,4	100	7,1
52	74	4,2	99	7,0
54	73	4,1	98	6,8
56	72	4,0	97	6,7
58	71	3,9	96	6,5
60	70	3,8	95	6,3
62	69	3,6	94	6,2
63	69	3,6	94	6,1

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 76 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

 $k_{H,1}$ for Joist Hanger BSIN 1st blank model - Partial nailing - F_1

	2	250	3	00	3	40	3	80	4	40	5	00
	n _H	nJ	n _H	nJ	n_H	nJ	n_H	nJ	n_H	$n_{\rm J}$	n_H	n _J
	6	4	10	6	10	6	12	6	14	8	18	10
А	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}
64	93	6.5	118	14.1	138	19.3	158	25.5	188	31.1	218	45.7
66	92	6.4	117	13.9	137	19.0	157	25.2	187	30.8	217	45.3
68	91	6.2	116	13.7	136	18.7	156	24.9	186	30.4	216	44.9
70	90	6.0	115	13.4	135	18.5	155	24.5	185	30.1	215	44.5
72	89	5.9	114	13.2	134	18.2	154	24.2	184	29.8	214	44.1
74	88	5.7	113	13.0	133	17.9	153	23.9	183	29.4	213	43.7
76	87	5.5	112	12.7	132	17.7	152	23.6	182	29.1	212	43.3
78	86	5.4	111	12.5	131	17.4	151	23.3	181	28.8	211	42.9
80	85	5.2	110	12.3	130	17.2	150	23.0	180	28.4	210	42.5
82	-	-	-	-	129	16.9	149	22.7	179	28.1	209	42.1
84	-	-	-	-	128	16.6	148	22.4	178	27.8	208	41.7
86	-	-	-	-	127	16.4	147	22.1	177	27.4	207	41.3
88	-	-	-	-	126	16.1	146	21.8	176	27.1	206	40.9
90	-	-	-	1	125	15.9	145	21.5	175	26.8	205	40.5
92	-	-	-	-	124	15.6	144	21.2	174	26.5	204	40.1
94	-	-	-	1	123	15.4	143	20.9	173	26.1	203	39.7
96	-	-	-	-	122	15.1	142	20.6	172	25.8	202	39.3
98	-	-	-	-	121	14.9	141	20.3	171	25.5	201	38.9
100	-	-	-	-	120	14.6	140	20.1	170	25.2	200	38.5
102	-	-	-	•	119	14.4	139	19.8	169	24.9	199	38.1
104	-	-	-	-	118	14.1	138	19.5	168	24.5	198	37.7
106	-	-	-	1	117	13.9	137	19.2	167	24.2	197	37.3
108	-	-	-	-	116	13.7	136	18.9	166	23.9	196	37.0
110	-	-	-	-	115	13.4	135	18.6	165	23.6	195	36.6
112	-	-	-	-	114	13.2	134	18.3	164	23.3	194	36.2
114	-	-	-	-	113	13.0	133	18.1	163	23.0	193	35.8
116	-	-	-	-	112	12.7	132	17.8	162	22.7	192	35.4
118	-	-	-	-	111	12.5	131	17.5	161	22.4	191	35.1
120	-	-	-	-	110	12.3	130	17.2	160	22.1	190	34.7

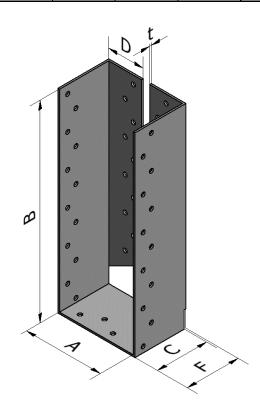
In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

k_{H,2} for BS<u>IN - Full or partial nailing - F₂</u>

		Total nun	nber of nails		le		
	Blank	in the	header	k _{H2}			
	Diank	Full nailing	Partial nailing	Full nailing	Partial nailing		
	200	6	4	3.5	2.6		
Je J	250	10	6	7.1	4.8		
noc	300	16	10	16.6	11.4		
nk ı	340	16	10	16.6	11.4		
1st blank model	380	20	12	23.9	15.8		
1 st	440	26	14	35.2	20.8		
	500	32	18	54.4	32.9		
2 nd blank model	200	4	-	2.6	-		
2 bla mo	250	6	-	4.8	-		

 $k_{H,1}$ and $k_{H,2}$ for BSIN for specific sizes listed in Table b

	k _{H,1}		k _{H,2}		n	Н	n _J	
Туре	Full nailing	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing
BSIN45/127	17.3	-	7.8	-	8	-	8	-
BSIN48/126	17	-	7.8	-	8	-	8	-
BSIN100/100	17.4	11.1	16.4	7.9	16	8	8	4
BSIN100/100*	14.5	10.9	10.6	7.8	12	8	8	4
BSIN48/166	27.2	-	11.4	-	10	-	10	-
BSIN60/160	25.6	-	11.4	-	10	-	10	-
BSIN140/120	25	15.4	23.8	11.4	20	10	10	6
BSIN140/180	56.1	36.5	54.5	25.9	32	16	16	8


^{* 5&}lt;sup>th</sup> blank model

D7 BSIL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSIL	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimonoid	ons [mm]				Но	les	
Blank			Dilliensi				Heade	er	Joist	
	Α	В	С	D	F	Т	Qty	Size	Qty	Size
90/195	90	195	60	42	62	2	18	Ø5	20	Ø5
90/235	90	235	60	42	62	2	24	Ø5	22	Ø5
100/190	100	190	60	42	62	2	18	Ø5	16	Ø5
100/230	100	230	60	42	62	2	22	Ø5	20	Ø5
115/223	115	223	60	42	62	2	22	Ø5	20	Ø5
120/180	120	180	60	42	62	2	18	Ø5	16	Ø5
120/220	120	220	60	42	62	2	22	Ø5	20	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger BSIL - Full nailing - F1

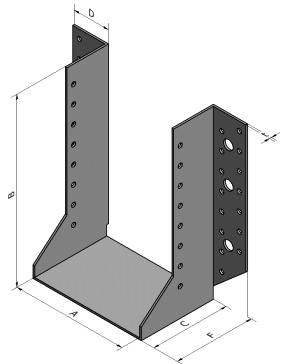
Model	Number	Number of nails					
Model	n _H	n₃	k _{H,1}				
90/195	18	18	27.8				
90/235	22	22	40.1				
100/190	16	18	26.6				
100/230	20	22	38.6				
115/223	20	20	36.1				
120/180	16	16	23.8				
120/220	20	20	35.3				

k_{H,1} for Joist Hanger BSIL - Partial nailing - F1

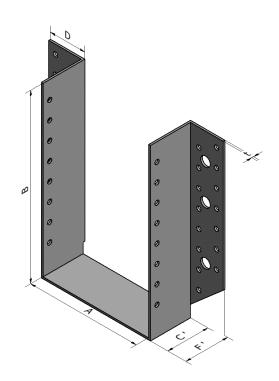
Model	Number	le.	
Wiodei	n _H	nJ	k _{H,1}
90/195	9	10	15.2
90/235	11	11	21.3
100/190	8	9	14.4
100/230	10	11	20.7
115/223	10	10	19.3
120/180	8	8	12.9
120/220	10	10	18.9

k_{H,2} for BSIL - Full or partial nailing - F2

	Total nun	nber of nails	k _{H2}			
Blank	in the	header				
	Full nailing	Partial nailing	Full nailing	Partial nailing		
90/195	18	9	27	13.48		
90/235	22	11	39.1	19.57		
100/190	16	9	27	13.48		
100/230	20	11	39.1	19.57		
115/223	20	10	32.8	16.38		
120/180	16	8	21.7	10.85		
120/220	20	10	32.8	16.38		


D8 BSN Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSN	Steel ref 1 - Steel ref 2	-


Dimensions

			Dim	ensio	n 0						Но	les		
Blank			יווווט	EHSIO	115					Head	er		Jo	oist
	Α	В	С	C'	D	F	F'	Т	Qty	Size	Qty	Size	Qty	Size
238	34- 60	(238-A)/2	70.5	45.5	37.5	72.5	47.5	2 -2.5 - 3	14	Ø5	2	Ø9	8	Ø5
260	34- 64	(260-A)/2	70.5	45.5	37.5	72.5	47.5	2 - 2.5 - 3	16	Ø5	4	Ø9	8	Ø5
280	100	90	78	45.5	40	80	47.5	2 - 2.5 - 3	14	Ø5	4	Ø11	8	Ø5
320	34- 80	(320-A)/2	78	45.5	40	80	47.5	2 - 2.5 - 3	20	Ø5	4	Ø11	10	Ø5
358	120	119	85	45.5	42	87	47.5	2 - 2.5 - 3	18	Ø5	4	Ø11	10	Ø5
380	34-101	(380-A)/2	78	45.5	40	80	47.5	2 - 2.5 - 3	24	Ø5	4	Ø11	12	Ø5
380	127	126.5	78	45.5	40	80	47.5	2 - 2.5 - 3	22	Ø5	4	Ø11	6	Ø5
418	140	139	82.5	45.5	39	84,5	47.5	2 - 2.5 - 3	22	Ø5	4	Ø11	12	Ø5
435	34-120	(435-A)/2	85	45.5	42	87	47.5	2 - 2.5 - 3	26	Ø5	6	Ø11	14	Ø5
435	150	142.5	85	45.5	42	87	47.5	2 - 2.5 - 3	26	Ø5	6	Ø11	14	Ø5
500	34-140	(500-A)/2	82.5	45.5	39	84.5	47.5	2 - 2.5 - 3	30	Ø5	6	Ø11	16	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	±1.0	±1.0	-	-	-	-	-	ı	-

Standard BSN

Alternative BSN

Parameters have to be used with equation in Annex C

 $k_{H,1}$ for Joist Hangers type BSN and BSI - Full nailing - F1

		238	2	60		280	3	20	3	58	3	80	380/ ⁻	127	4	18	43	5	435	/150	5	00
	nн	nJ	nн	nJ	nн	nл	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ
	14	8	16	8	14	8	20	10	18	10	24	12	24	12	24	12	26	14	26	14	30	16
Α	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}
50	94	19.0	105	23.7	-		135	34.3			165	51.4	_				190.0	59.2		- 11,1	225	79.9
52	93	18.6	104	23.2	_		134	33.7	_	_	164	50.8	_	_	_	_	189.0	58.6	_	_	224	79.2
54	92	18.2	103	22.7	-	-	133	33.2	-	-	163	50.1	-	-	-	-	188.0	58.0	-	-	223	78.5
56	91	17.8	102	22.3	-	-	132	32.7	-	-	162	49.5	-	-	-	-	187.0	57.4	-	-	222	77.8
60	89	16.9	100	21.3	-	-	130	31.7	-	-	160	48.3	-	-	-	-	185.0	56.2	-	-	220	76.5
64	-	-	98	20.4	-	-	128	30.6	-	-	158	47.0	-	-	-	-	183.0	55.0	-	-	218	75.1
65	-	-	-	-	-	-	128	30.4	-	-	158	46.7	-	-	-	-	182.5	54.7	-	-	218	74.8
68	-	-	-	-	-	-	126	29.6	-	-	156	45.8	-	-	-	-	181.0	53.8	-	-	216	73.8
71	-	-	-	-	-	-	125	28.9	-	-	155	44.9	-	-	-	-	179.5	52.9	-	-	215	72.8
75	-	-	-	-	-	-	123	27.9	-	-	153	43.7	-	-	-	-	177.5	51.7	-	-	213	71.4
76	-	-	-	-	-	-	122	27.6	-	-	152	43.4	-	-	-	-	177.0	51.4	-	-	212	71.1
80	-	-	-	-	-	-	120	26.7	-	-	150	42.2	-	-	-	-	175.0	50.3	-	-	210	69.8
81	-	•	-	•	-	-	-	-	ı	-	150	41.9	-	•	ı	-	174.5	50.0	-	1	210	69.5
85	-	-	-	-	-	-	-	-	-	-	148	40.8	-	-	-	-	172.5	48.8	-	-	208	68.1
89	-	-	-	-	-	-	-	-	-	-	146	39.6	-	-	-	-	170.5	47.7	-	-	206	66.8
93	-	-	-	-	-	-	-	-	-	-	144	38.4	-	-	-	-	168.5	46.5	-	-	204	65.5
97	-	-	-	-	-	-	-	-	-	-	142	37.3	-	-	-	-	166.5	45.4	-	-	202	64.2
100	-	-	-	-	90	17.9	-	-	-	-	140	36.5	-	-	-	-	165.0	44.6	-	-	200	63.3
101	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	164.5	44.3	-	-	200	63.0
105	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	162.5	43.2	-	-	198	61.7
109	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	160.5	42.1	-	-	196	60.4
113	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	158.5	41.0	-	-	194	59.1
117	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	156.5	39.9	-	-	192	57.9
120	-	-	-	-	-	-	-	-	119	22.2	-	-	-	-	-	-	155.0	39.1	-	-	190	57.0
124	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	188	55.7
127	-	-	-	-	-	-	-	-	-	-	-	-	126.5	29.7	-	-	-	-	-	-	187	54.8
128	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	186	54.5
132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	184	53.3
136	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	182	52.1
140	-	-	-	-	-	-	-	-	-	-	-	-	-	-	139	30.1	-	-	- 140	- 04.0	180	50.9
150	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	140	24.2	-	-

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 82 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

 $k_{\text{H,1}}$ for $\,$ Joist Hangers type BSN and BSI - Partial nailing - F1 $\,$

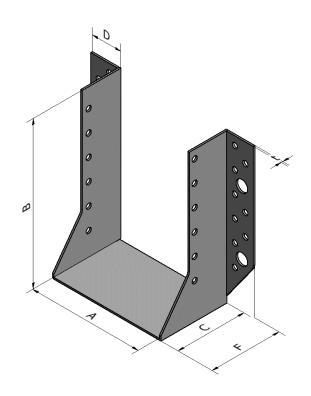
	2	38	2	60	2	280	32	0	3	58	38	0	380/	127	4	18	43	5	435	/150	50	00
	n_{H}	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n_{H}	nJ	n _H	nJ	n _H	$n_{\rm J}$	n_H	nJ	n_H	nJ	n_H	nJ	n _H	nJ
	8	4	8	4	8	4	10	6	10	6	12	6	10	6	12	6	14	8	12	6	16	8
Α	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1
34	102	14.6	113	14.6	-	-	143	21.4	-	-	173	29.9	-	-	-	-	198	38.9	-	-	233	45.9
36	101	14.3	112	14.3	-	-	142	21.1	-	-	172	29.6	-	-	-	-	197	38.6	-	-	232	45.5
40	99	13.7	110	13.7	-	-	140	20.4	-	-	170	28.9	-	-	-	-	195	37.8	-	-	230	44.7
44	97	13.2	108	13.2	-	-	138	19.8	-	-	168	28.2	-	-	-	-	193	37.1	-	-	228	43.9
48	95	12.6	106	12.6	-	-	136	19.2	-	-	166	27.5	-	-	-	-	191	36.4	-	-	226	43.2
52	93	12.1	104	12.1	-	-	134	18.6	-	-	164	26.8	-	-	-	-	189	35.7	-	-	224	42.4
56	91	11.6	102	11.6	-	-	132	18.0	-	-	162	26.1	-	-	-	-	187	34.9	-	-	222	41.6
60	89	11.1	100	11.1	-	-	130	17.4	-	-	160	25.4	-	-	-	-	185	34.2	-	-	220	40.9
64	-	-	98	10.6	-	-	128	16.9	-	-	158	24.8	-	-	-	-	183	33.5		-	218	40.1
65	-	-	-	-	-	-	127.5	16.7	-	-	157.5	24.6	-	-	-	-	182.5	33.3	-	-	217.5	39.9
68	-	-	-	-	-	-	126	16.3	-	-	156	24.1	-	-	-	-	181	32.8	-	-	216	39.4
71	-	-	-	-	-	-	124.5	15.9	-	-	154.5	23.6	-	-	-	-	179.5	32.3	-	-	214.5	38.8
75	-	-	-	-	-	-	122.5	15.3	-	-	152.5	23.0	-	-	-	-	177.5	31.6		-	212.5	38.0
76	-	-	-	-	-	-	122	15.2	-	-	152	22.8	-	-	-	-	177	31.4	-	-	212	37.9
80	-	-	-	-	-	-	120	14.6	-	-	150	22.2	-	-	-	-	175	30.7	-	-	210	37.1
81 85	-	-		-	-			-	-	-	149.5 147.5	22.0	-	-	-	-	174.5 172.5	30.6	-		209.5	36.9 36.2
89	-	-	-	-	-	-	-	-	-	-	147.5	20.8	-	-	-	-	172.5	29.9	-	-	207.5	35.5
93	-			<u>-</u>			-	-		-	143.5	20.8				<u>-</u>	168.5	28.5	H	<u>-</u>	203.5	34.8
97	_			_			_	_		_	141.5	19.5	-	_		_	166.5	27.8	 	_	201.5	34.0
100	_	_	_	_	90	9.7	_	_	_	-	140	19.1	_	_	_	_	165	27.3	 	_	200	33.5
101	_	-	_	-	-	-	_	_	_	-	-	-	_	_	_	-	164.5	27.2	_	-	199.5	33.3
105	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	162.5	26.5	-	-	197.5	32.6
109	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	160.5	25.9	-	-	195.5	31.9
113	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	158.5	25.2	-	-	193.5	31.2
117	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	156.5	24.6	-	-	191.5	30.5
120	-	-	-	-	-	-	-	-	119	13.7	-	-	-	-	-	-	155	24.1	-	-	190	30.0
124		-		-			-	-	-	•	-	-		-		-	-	-		-	188	29.3
127	-	-	-	-	-	-	-	-	-	-	-	-	126.5	15.2	-	-	-	-		-	186.5	28.8
128	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	186	28.6
132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	184	28.0
136	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	182	27.3
140	-	-	-	-	-	-	-	-	-	-	-	-	-	-	139	18.8	-	-	-	-	180	26.7
150																			140	17.6		

In the case of intermediate width, $k_{H,1}$ can be calculated by linear interpolation.

 $\mathbf{k}_{H,2}$ for BSN - Full or partial nailing - F2

Blank		nber of nails header	ı	CH2
	Full nailing	Partial nailing	Full nailing	Partial nailing
238	14	8	17.2	10.2
260	16	8	21.4	10.3
280	14	8	14.9	8.7
320	20	10	26.6	14.8
358	18	10	19.4	11.1
380	24	12	35.0	19.7
380/127	22	10	31.4	13.8
418	22	12	31.1	14.0
435	26	14	36.7	20.3
435/150	26	14	36.7	20.3
500	30	16	46.7	25.5

 $n_{i,ef,1}$ and $n_{i,ef,2}$ for BSN - Full or partial nailing - F1 or F2


		nber of nails		F1	ı	F2
Blank			Full nailing	Partial nailing	Full nailing	Partial nailing
	Full nailing	Partial nailing	n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}
238	8	4	3.91	3.21	3.63	2.59
260	8	4	3.91	3.21	3.63	2.59
280	8	4	3.38	2.78	3.19	2.35
320	10	6	5.45	4.01	5.02	3.47
358	10	6	4.83	3.55	4.52	3.16
380	12	6	8.04	5.43	7.19	4.27
380/127	10	6	5.45	4.01	5.02	3.47
418	12	6	7.12	4.21	6.51	3.6
435	14	8	9.87	6.47	8.81	5.39
435/150	12	6	7.19	4.26	6.57	3.63
500	16	8	12.58	6.84	11.07	5.6

D9 BSNN Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSNN	Steel ref 1 - Steel ref 2	-

Dimensions

Dimensions			_	_					Н	oles		
Blank		Dimensi	ons [n	nm]				Hea	der		Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
230	38-76	(230-A)/2	60	27	64	2	8	Ø5	2	Ø11	6	Ø5
260	38-76	(260-A)/2	60	27	64	2	12	Ø5	2	Ø11	6	Ø5
320	38-100	(320-A)/2	60	27	64	2	16	Ø5	2	Ø11	10	Ø5
380	38-106	(380-A)/2	60	27	64	2	18	Ø5	4	Ø11	12	Ø5
440	38-140	(440-A)/2	60	27	64	2	22	Ø5	4	Ø11	14	Ø5
500	38-140	(500-A)/2	60	27	64	2	26	Ø5	4	Ø11	16	Ø5
				Spe	cific si	zes						
BSNN100/100	100	100	60	27	64	2	14	Ø5	2	Ø11	8	Ø5
BSNN120/110	120	110	60	27	64	2	12	Ø5	2	Ø11	8	Ø5
BSNN140/120	140	120	60	27	64	2	16	Ø5	2	Ø11	10	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	ı	-	-	-

Page 85 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Parameters have to be used with equation in Annex C.

 $k_{\text{H},1}$ for Joist Hanger BSNN - Full nailing - F1

		230	2	60	3	20	3	80	4	40	;	500
	пн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ
	8	6	12	6	16	10	18	12	22	14	26	16
Α	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}
36	97	15.7	112	24.8	142	39.1	172	56.4	202	78.3	232	105.8
40	95	15.1	110	23.9	140	38.1	170	55.2	200	76.9	230	104.1
44	93	14.4	108	23.1	138	37.0	168	54.0	198	75.4	228	102.4
48	91	13.8	106	22.2	136	35.9	166	52.8	196	74.0	226	100.7
52	89	13.2	104	21.4	134	34.9	164	51.6	194	72.6	224	99.0
56	87	12.5	102	20.6	132	33.8	162	50.4	192	71.1	222	97.4
60	85	11.9	100	19.7	130	32.8	160	49.2	190	69.7	220	95.7
64	83	11.3	98	18.9	128	31.8	158	48.0	188	68.3	218	94.0
68	81	10.7	96	18.1	126	30.8	156	46.9	186	66.9	216	92.4
72	79	10.1	94	17.4	124	29.8	154	45.7	184	65.5	214	90.7
76	77	9.6	92	16.6	122	28.8	152	44.5	182	64.1	212	89.1
80					120	27.8	150	43.4	180	62.7	210	87.5
90					115	25,4	145	40.5	175	59.3	205	83.4
100					110	23,0	140	37.7	170	56.0	200	79.4
110									165	52.7	195	75.5
120									160	49.4	190	71.6
130									155	46.3	185	67.8
140									150	43,2	180	64.0

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation. $k_{\text{H},1}$ value can be used both for column and beam.

k_{H,1} for Joist Hanger BSNN- Partial nailing - F1

		230	2	60	3	20	3	80	44	0	50	0
	nΗ	nJ	nн	nJ								
	6	3	8	4	10	6	12	6	14	8	16	8
Α	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	Н	k H,1
36	97	15.1	112	19.0	142	27.9	172	39.9	202	54.1	232	70.3
40	95	14.6	110	18.3	140	27.2	170	39.1	200	53.1	230	69.1
44	93	14.0	108	17.7	138	26.4	168	38.2	198	52.1	228	68.0
48	91	13.4	106	17.0	136	25.7	166	37.4	196	51.1	226	66.9
52	89	12.9	104	16.4	134	25.0	164	36.5	194	50.1	224	65.8
56	87	12.3	102	15.8	132	24.3	162	35.7	192	49.2	222	64.7
60	85	11.8	100	15.2	130	23.6	160	34.8	190	48.2	220	63.7
64	83	11.3	98	14.6	128	22.8	158	34.0	188	47.2	218	62.6
68	81	10.7	96	14.0	126	22.1	156	33.2	186	46.3	216	61.5
72	79	10.2	94	13.4	124	21.5	154	32.4	184	45.3	214	60.4
76	77	9.7	92	12.8	122	20.8	152	31.5	182	44.4	212	59.3
80					120	20.1	150	30.7	180	43.5	210	58.3
90					115	18,4	145	28.7	175	41.1	205	55.6
100					110	16,8	140	26.8	170	38.8	200	53.0
110	_								165	36.6	195	50.5
120									160	34.4	190	47.9
130									155	32.3	185	45.4
140									150	30.2	180	43.0

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

 $k_{H,1}$ value can be used both for column and beam.

k_{H,2} for BSNN - Full or partial nailing - F2

Blank	Total numb in the l			k _{H2}
	Full nailing	Partial nailing	Full nailing	Partial nailing
230	8	6	9.6	6.7
260	12	8	15.9	10.7
320	16	10	25.6	15.7
380	18	12	29.9	21.7
440	22	14	44.3	28.6
500	26	16	58.1	36.4

k_{H,2} value can be used both for column and beam

 $k_{\text{H},1}$ and $k_{\text{H},2}$ for specific sizes of BSNN

KH, T GITG KH, Z TOT C	HI,1 and KH,2 for specific sizes of botto												
	k _i	⊣,1	k _i	Н,2	n	н	nJ						
Туре	Full nailing	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing					
BSNN100/100	18	14,4	21,3	13,0	14	8	8	4					
BSNN120/110	23	17,3	15,9	10,7	12	8	8	4					
BSNN140/120	29,7	19,5	23,9	15,7	16	10	10	6					

Page 87 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Characteristic capacities for BSNN - with connector screw SSH/SSF

			Produ	ct capac	ities - Ti	mber to 1	Timber - I	Large co	nnector s	crew		
		Fastener			С	haracteri	istic capa	cities - T	imber C2	24		
Blank		Header	J	Joist R _{1.k} R ₂						2.k		
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
BSNN230	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7.83	8.49	9.04	9.17	7.81	8.28	8.89	9.06
BSNN260	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7.83	8.49	9.04	9.17	7.84	8.59	9.11	9.22
BSNN320	2	SSH10.0x50 ⁽¹⁾	10	CNA*	9.43	9.43	9.43	9.43	9.43	9.43	9.43	9.43
BSNN380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	15.57	16.26	16.61	16.61	15.69	16.38	16.61	16.61
BSNN440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	16.56	16.61	16.61	16.61	16.57	16.61	16.61	16.61
BSNN500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	17.49	17.49	17.49	17.49	17.49	17.49	17.49	17.49

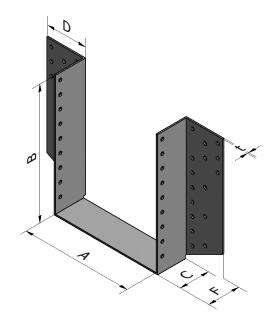
⁽¹⁾SSH can be replaced by SSF

		!	Produ	ct capac	cities - Ti	mber to T	Γimber - I	Large co	nnector s	crew		
		Fastener	S			С	haracteri	istic capa	cities - T	imber C2	24	
Blank		Header	J	oist		R	3.k			R	4.k	
	Qty Type		Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
BSNN230	2	SSH10.0x50 ⁽¹⁾	6	CNA*	2.47	2.88	3.55	4.23	5.00	5.00	5.00	5.00
BSNN260	2	SSH10.0x50 ⁽¹⁾	6	CNA*	1.88	1.98	2.49	3.02	5.00	5.00	5.00	5.00
BSNN320	2	SSH10.0x50 ⁽¹⁾	10	CNA*	1.40	1.48	1.88	2.32	5.00	5.00	5.00	5.00
BSNN380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	2.62	2.71	3.19	3.71	10.00	10.00	10.00	10.00
BSNN440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	2.14	2.21	2.61	3.04	10.00	10.00	10.00	10.00
BSNN500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	2.13	2.18	2.49	2.84	10.00	10.00	10.00	10.00

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber which is not included in these capacities.

^{*}Refer to *Characteristic Capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.


D10 BSS Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
BSS	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimensis					Но	les	
Blank			Dimensio	ons įmmį			Heade	r	Joist	
	Α	В	С	D	F	t	Qty	Size	Qty	Size
240	40-60	(240-A)/2	45.5	59.5	47.5	2	16	Ø5	8	Ø5
280	40-60	(280-A)/2	45.5	59.5	47.5	2	20	Ø5	10	Ø5
300	40-80	(300-A)/2	45.5	59.5	47.5	2	20	Ø5	10	Ø5
340	40-80	(340-A)/2	45.5	59.5	47.5	2	22	Ø5	12	Ø5
360	40-100	(360-A)/2	45.5	59.5	47.5	2	22	Ø5	12	Ø5
380	40-100	(380-A)/2	45.5	59.5	47.5	2	26	Ø5	14	Ø5
400	40-100	(400-A)/2	45.5	59.5	47.5	2	26	Ø5	14	Ø5
440	40-100	(440-A)/2	45.5	59.5	47.5	2	28	Ø5	16	Ø5
440*	40-140	(440*-A)/2	45.5	59.5	47.5	2	26	Ø5	14	Ø5
460	40-120	(460-A)/2	45.5	59.5	47.5	2	28	Ø5	16	Ø5
480	40-100	(480-A)/2	45.5	59.5	47.5	2	32	Ø5	18	Ø5
500	40-120	(500-A)/2	45.5	59.5	47.5	2	32	Ø5	18	Ø5
540	40-120	(540-A)/2	45.5	59.5	47.5	2	34	Ø5	20	Ø5
540*	40-160	(540*-A)/2	45.5	59.5	47.5	2	32	Ø5	18	Ø5
580	40-120	(580-A)/2	45.5	59.5	47.5	2	32	Ø5	18	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-

^{*}Alternative blank model

Parameters have to be used with equation in Annex C.

 $k_{\text{H,1}}$ for Joist Hanger BSS - Full nailing - F1

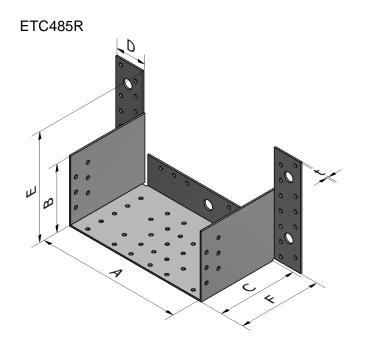
	2	40	28	80	3	00	3	40	3	60	38	80	4	00	4	40	44	10*	4	60	48	80	50	00	5	40	54	10 *	5	80
	n _H	nJ	nн	nJ	nн	nJ	n _H	nJ																						
	16	8	20	10	20	10	22	12	22	12	26	14	26	14	28	16	26	14	28	16	32	18	32	18	34	20	32	18	32	18
Α	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}																						
40	100	14.4	120	22.5	130	26.4	150	34	160	37.5	170	42.3	180	47.2	200	56.8	200	57.5	210	62.2	220	67.3	230	73.2	250	84.8	250	85.4	270	119.3
42	99	14.1	119	22.1	129	26	149	33.5	159	37	169	41.8	179	46.7	199	56.3	199	57	209	61.7	219	66.7	229	72.6	249	84.2	249	84.8	269	118.5
44	98	13.8	118	21.7	128	25.6	148	33.1	158	36.6	168	41.3	178	46.2	198	55.8	198	56.5	208	61.1	218	66.1	228	72	248	83.6	248	84.2	268	117.8
46	97	13.5	117	21.3	127	25.2	147	32.7	157	36.1	167	40.8	177	45.7	197	55.2	197	56	207	60.6	217	65.5	227	71.4	247	83	247	83.6	267	117
48	96	13.2	116	20.9	126	24.8	146	32.2	156	35.7	166	40.4	176	45.3	196	54.7	196	55.4	206	60.1	216	65	226	70.8	246	82.3	246	82.9	266	116.3
50	95	12.9	115	20.5	125	24.4	145	31.8	155	35.2	165	39.9	175	44.8	195	54.2	195	54.9	205	59.5	215	64.4	225	70.2	245	81.7	245	82.3	265	115.5
52	94	12.6	114	20.2	124	24	144	31.4	154	34.7	164	39.4	174	44.3	194	53.6	194	54.4	204	59	214	63.8	224	69.6	244	81.1	244	81.7	264	114.8
54	93	12.3	113	19.8	123	23.6	143	30.9	153	34.3	163	38.9	173	43.8	193	53.1	193	53.9	203	58.4	213	63.2	223	69	243	80.4	243	81.1	263	114
56	92	12.1	112	19.4	122	23.2	142	30.5	152	33.8	162	38.5	172	43.3	192	52.6	192	53.4	202	57.9	212	62.7	222	68.5	242	79.8	242	80.5	262	113
58	91	11.8	111	19	121	22.8	141	30.1	151	33.4	161	38	171	42.8	191	52.1	191	52.8	201	57.4	211	62.1	221	67.9	241	79.2	241	79.9	261	112.5
60	90	11.5	110	18.7	120	22.5	140	29.7	150	32.9	160	37.5	170	42.3	190	51.5	190	52.3	200	56.8	210	61.5	220	67.3	240	78.6	240	79.3	260	111.8
62	-	-	-	-	119	22.1	139	29.3	149	32.5	159	37	169	41.8	189	51	189	51.8	199	56.3	209	60.9	219	66.7	239	78	239	78.6	259	111
64	-	-	-	-	118	21.7	138	28.8	148	32	158	36.6	168	41.3	188	50.5	188	51.3	198	55.8	208	60.4	218	66.1	238	77.3	238	78	258	110.3
66	-	-	-	-	117	21.3	137	28.4	147	31.6	157	36.1	167	40.8	187	50	187	50.8	197	55.2	207	59.8	217	65.5	237	76.7	237	77.4	257	109.5
68	-	-	-	-	116	20.9	136	28	146	31.2	156	35.7	166	40.4	186	49.5	186	50.3	196	54.7	206	59.2	216	65	236	76.1	236	76.8	256	108.8
70	-	-	-	-	115	20.5	135	27.6	145	30.7	155	35.2	165	39.9	185	49	185	49.8	195	54.2	205	58.7	215	64.4	235	75.5	235	76.2	255	108.1
72	-	-	-	-	114	20.2	134	27.2	144	30.3	154	34.7	164	39.4	184	48.4	184	49.3	194	53.6	204	58.1	214	63.8	234	74.9	234	75.6	254	107.3
74	-	-	-	-	113	19.8	133	26.8	143	29.9	153	34.3	163	38.9	183	47.9	183	48.8	193	53.1	203	57.6	213	63.2	233	74.3	233	75	253	106.6
76	-	-	-	-	112	19.4	132	26.3	142	29.4	152	33.8	162	38.5	182	47.4	182	48.3	192	52.6	202	57	212	62.7	232	73.7	232	74.4	252	105.9
78	-	-	-	-	111	19	131	25.9	141	29	151	33.4	161	38	181	46.9	181	47.8	191	52.1	201	56.5	211	62.1	231	73.1	231	73.8	251	105.1
80	-	-	-	-	110	18.7	130	25.5	140	28.6	150	32.9	160	37.5	180	46.4	180	47.2	190	51.5	200	55.9	210	61.5	230	72.5	230	73.2		104.4
82	-	-	-	-	-	-	-	-	139	28.2	149	32.5	159	37	179	45.9	179	46.7	189	51	199	55.4	209	60.9	229	71.9	229	72.6	249	103.7
84	-	-	-	-	-	-	-	-	138	27.8	148	32	158	36.6	178	45.4	178	46.2	188	50.5	198	54.8	208	60.4	228	71.2	228	72	248	103
86	-	-	-	-	-	-	-	-	137	27.3	147	31.6	157	36.1	177	44.9	177	45.7	187	50	197	54.3	207	59.8	227	70.6	227	71.4	247	102.2
88	-	-	-	-	-	-	-	-	136	26.9	146	31.2	156	35.7	176	44.4	176	45.3	186	49.5	196	53.7	206	59.2	226	70	226	70.8		101.5
90	-	-	-	-	-	-	-	-	135	26.5	145	30.7	155	35.2	175	43.9	175	44.8	185	49	195	53.2	205	58.7	225	69.5	225	70.2	245	100.8
92	-	-	-	-	-	-	-	-	134	26.1	144	30.3	154	34.7	174	43.4	174	44.3	184	48.4	194	52.6	204	58.1	224	68.9	224	69.6		100.1
94	-	-	-	-	-	-	-	-	133	25.7	143	29.9	153	34.3	173	42.9	173	43.8	183	47.9	193	52.1	203	57.6	223	68.3	223	69	243	99.3

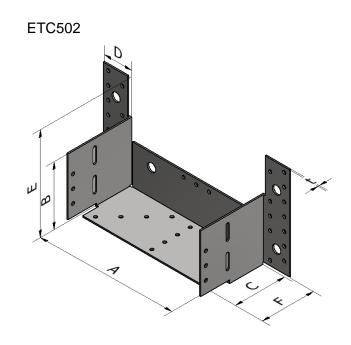
Page 90 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

96	_	_	_	_	_	_	_	_	132	25.3	142	29.4	152	33.8	172	42.4	172	43.3	182	47 4	192	51.6	202	57	222	67.7	222	68.5	242	98.6
98	_	_	_	_	-	_	_	_	131	24.9	141	29		33.4	171	41.9	171			46.9	191	51		56.5		67.1	221	67.9	241	97.9
100	_	_	_	_	_	_	_	_	130	24.6	140			32.9	170	41.5	170	42.3		46.4		50.5				66.5		67.3		97.2
102	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		41.8		45.9	-	-				65.9			239	96.5
104	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	168	41.3		45.4	-	-	198			65.3		66.1	238	95.8
106	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	167	40.8	177	44.9	-	-	197		217		217	65.5	237	95.1
108	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	166	40.4	176	44.4	-	-	196		216	64.2	216	65	236	94.4
110	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	165	39.9	175	43.9	-	-	195	53.2	215	63.6	215	64.4	235	93.7
112	-	-	-	•	-	-	-	-	-	-	-	-		-	-	-	164	39.4	174	43.4	-	-	194	52.6	214	63	214	63.8	234	93
114	-	-	-	-	ı	-	-	•	-	-	-	-	ı	-	-	-	163	38.9	173	42.9	ı	-	193	52.1	213	62.4	213	63.2	233	92.3
116	-	-	-	-	ı	-	-	•	-	-	ı	-	ı	-	ı	-	162	38.5	172	42.4	ı	-	192	51.6	212	61.8	212	62.7	232	91.6
118	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	161	38	171	41.9	-	-	191	51	211	61.3	211	62.1	231	90.9
120	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	160	37.5	170	41.5	-	-	190	50.5	210	60.7		61.5	230	90.2
122	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	159	37	-	-	-	-	-	-	-	-		60.9	-	-
124	-	-	-	-	•	-	-	-	-	-	-	-	ı	-	-	-	158	36.6	-	-	•	-	•	-	-	-	208	60.4		-
126	-	-	-	-	•	-	-	-	-	-	-	-	ı	-	-	-	157	36.1	-	-	•	-	•	-	-	-	207	59.8		-
128	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	156	35.7	-	-	-	-	-	-	-	-	206	59.2		-
130	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	155	35.2	-	-	-	-	-	-	-	-	205	58.7		-
132	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	154	34.7	-	-	-	-	-	-	-	-	204	58.1		-
134	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	153	34.3	-	-	-	-	-	-	-	-	203	57.6		-
136	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	152	33.8	-	-	-	-	-	-	-	-	202	57		-
138	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	151	33.4	-	-	-	-	-	-	-	-	201	56.5		-
140	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	150	32.9	-	-	-	-	-	-	-	-	200	55.9		-
142	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	199	55.4		-
144	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	198	54.8		-
146	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	197	54.3	<u> -</u> -	-
148	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	196	53.7		-
150	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	195	53.2		-
152	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	194	52.6	\vdash	-
154	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	193	52.1	\vdash	-
156	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	192	51.6	\vdash	-
158	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	191	51	\vdash	-
160	-	-	-	-	-	-	-	- n ho		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	190	50.5		-

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

$k_{\text{H,2}}$ for BSS - Full nailing - F2 $\,$


Blank	Total number of nails in the header	k _{H2}
	Full nailing	Full nailing
240	16	11
280	20	18.2
300	20	18.2
340	22	21.4
360	22	21.4
380	26	31.9
400	26	31.9
440	28	36.2
440*	26	31.9
460	28	36.2
480	32	49.9
500	32	49.9
540	34	57.1
540*	32	49.9
580	32	72.1

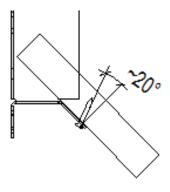

D11 ETC Truss connector

Product Name	Material reference acc. to clause II-1	Alternative Names
ETC	Steel ref 1 - Steel ref 2	-

Dimensions

										Н	oles		
Model			Dimen	sions [n	nm]				н	eader		Suppo mem	
	A B C D E F								Size	Qty	Size	Qty	Size
ETC485 R	195	90	110	42	145	112	2	30	Ø5	5	Ø13	43	Ø5
ETC502	206	93	78	41	148	80	2	27	Ø5	6	Ø13	18	Ø5
Permitted deviation	ı	•	±1.0	±1.0	±1.0	±1.0	-	1	-			ı	-

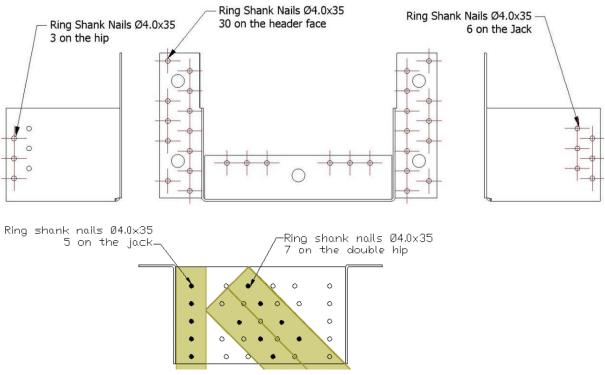
Characteristic capacity for ETC - Full nailing - F1, F2 - timber to timber

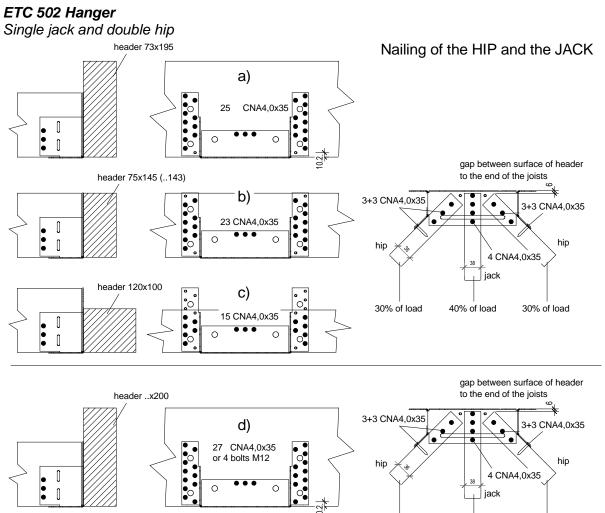

	Capaci	•	astener	s - CN	A4.0x35								
Model	Hea	ader		Hip		Já	ack	Chara	cterist	іс сара	acity	[kN] -	C24
	Timber	Rigid	Туре	Side	Bottom	Side	Bottom		R _{1,k}			R _{2,k}	
	Tillibei	support	Type	Side	Bottom	Side	Bottom	Hip	Jack	Total	Hip	Jack	Max
ETC485R ⁽²⁾	30	4 Ø12	2 Plys	3	7	6	5	16.8	5.6	22.4	5.7	5.9	3.8
ETC485R ⁽¹⁾	20	-	2 Plys	3	7	6	5	-	-	-	5.7	5.9	3.8
ETC502 ^(a)	25	ı	1 Ply	3	4	0	4	4.92	6.56	16.4	5.6	1.2	4.4
ETC502(b)	23	ı	1 Ply	3	4	0	4	4.32	5.76	14.4	5.6	1.2	3.3
ETC502(c)	15	ı	1 Ply	3	4	0	4	3.42	4.52	11.4	5.6	1.2	3.3
ETC502 ^(d)	27	4 Ø12	1 Ply	3	4	0	4	9.28	4.64	23.2	5.6	1.2	4.4

- (2) Header and Joist allow full nailing so Header > 147 mm and Joist > 95mm
- (1) Header and Joist ≥ 97 mm
- (a) Header and Joist allow full nailing so Header > 195 mm and Joist > 95 mm
- (b) Header and Joist allow full nailing so Header > 145 mm and Joist > 95 mm
- (c) Header and Joist allow full nailing so Header ≥ 97 mm and Joist > 95 mm
- (d) Header and Joist allow full nailing so Header > 200 mm and Joist > 95 mm

For uplift value : $F_k = min (Hip + Jack ; Max)$

It has to be checked, that the header has a sufficient stiffness, especially the torsion and the resistance for *tension* perpendicular to the grain. The width of the header has to fullfill the need.


The nails in the hips are placed between 0° and $\sim 20^{\circ}$ - see picture:



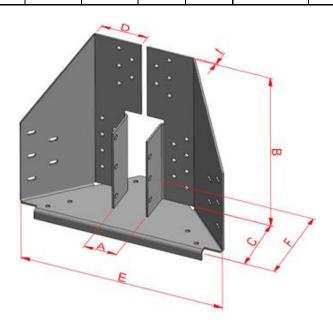
Nail pattern

ETC485R Hangers

Single jack and double hips

20% of load

40% of load


40% of load

D12 ETC392 Truss Connector

Product Name	Material reference acc. to clause II-1	Alternative Names
ETC392	Steel ref 1 - Steel ref 2	-

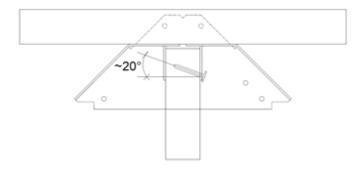
Dimensions

			Dim	onciono	[mm]				Ho	oles	
Model			Dill	ensions	Limini			Head	der	Supported	l member
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size
ETC392	38	195	68	54	239	102	2	26	Ø5	20	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	±1.0	-	-	-	-	-

Characteristic capacity for ETC - Full nailing - F1, F2 - timber to timber - 1 jack + 2 hips

			Fast	eners -	CNA4.0	0x35				Chara	cteristic Timbe	capac er C24	ity [kN]	
Model		Heade	er		Hip		Ja	ck		$R_{1,k}$			$R_{2,k}$	
	Туре	Face	Bottom	Туре	Side	Bottom	Туре	Side	Hip	Jack	Total	Hip	Jack	Total
ETC392	1 Ply	24	2	1 Ply	5	2	1 Ply	6	8.78	4.39	21.96	6.64	3.32	16.60

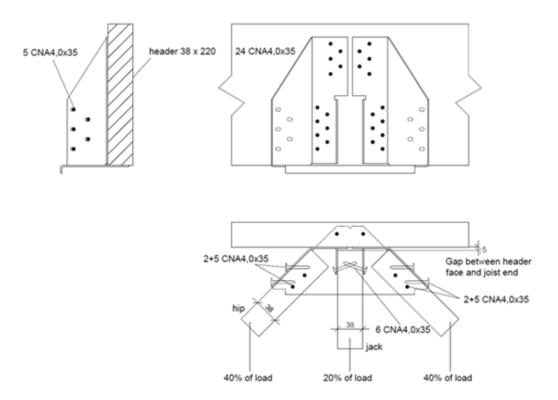
⁽¹⁾ Header and Joist depth ≥ 97 mm

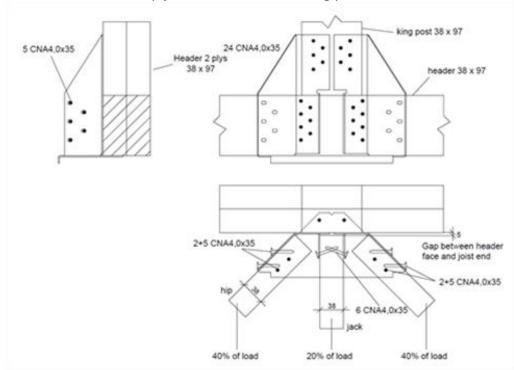

All joists members shall be installed ensuring a symmetrical configuration.

Spacings and edge distances shall be checked for the group of 10 nails located in the upper part of the hanger depending on the header depth and the vertical member dimension.

Header member can be made of 2 plies 38 x 220 mm. When the header is composed of 2 plies of 38x97 mm, it requires the installation of a 1 ply vertical member (king post) of a minimum width of 97 mm, directly above the header.

The resistance of the supporting and supported members shall be checked, in particular the *tension* perpendicular to the grain.


The nails in the central joist member are installed at approximately 20° - See image below.

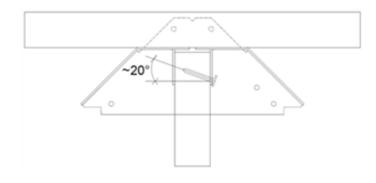

Nail pattern *ETC392*

Nailing of the hips and jack - 1 jack + 2 hips

• Header is made of 2 plys of 38 x 220 mm.

• Header is made of 2 plys of 38 x 97 mm + a king post of 38 x 97 mm.

Characteristic capacity for ETC - Full nailing - F1, F2 - timber to timber - 1 jack + 1 hip

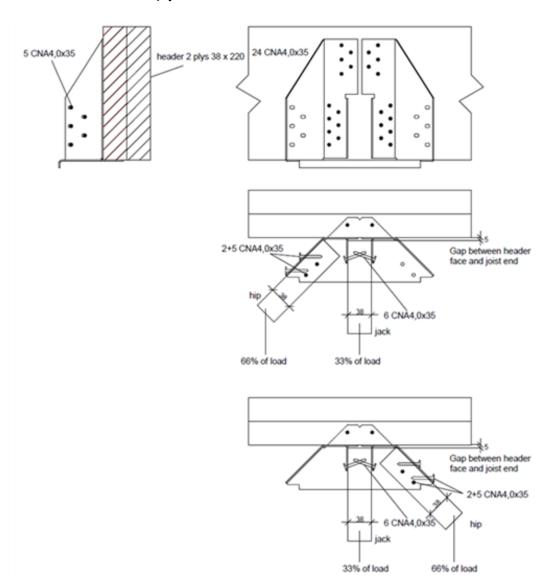

			Fast	eners -	CNA4.0	0x35			Characteristic capacity [kN] Timber C24						
Model	Header			Hip			Jack		R _{1,k}			R _{2,k}			
Wodel	Туре	pe Face	Pottom	Typo	Sido	Bottom	Type	Side	IX1,k				1 \2 ,K		
			Bottom	Туре	Side		Туре	Side	Hip	Jack	Total	Hip	Jack	Total	
ETC392	1 Ply	24	2	1 Ply	5	2	1 Ply	6	10.92	5.46	16.39	6.45	3.25	9.70	

⁽¹⁾ Header and Joist height ≥ 97 mm

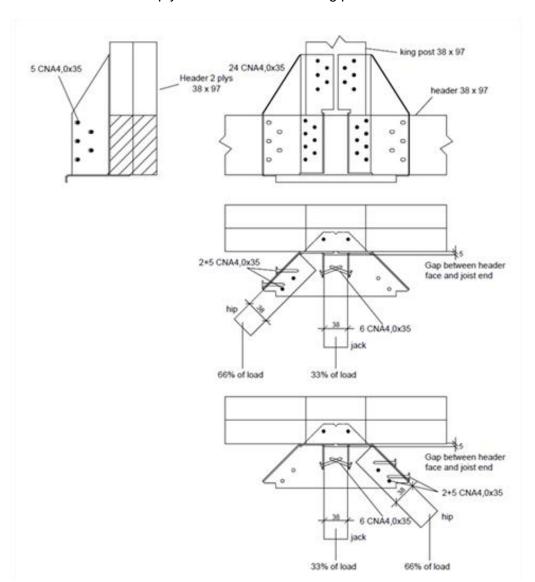
Spacings and edge distances shall be checked for the group of 10 nails located in the upper part of the hanger depending on the header depth and the vertical member dimension.

The resistance of the supporting and supported members shall be checked, in particular the *tension* perpendicular to the grain.

The nails in the central joist member are installed at approximately 20° - See image below.



⁽²⁾ Header member can be made of 2 plies 38 x 220 mm. When the header is composed of 2 plies of 38x97 mm, it requires the installation of a 1 ply vertical member (king post) of minimum width of 97 mm, directly above the header.


Nail pattern *ETC*392

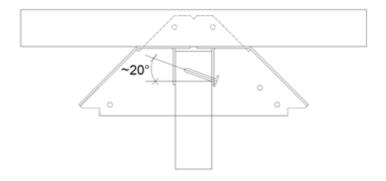
Nailing of the hips and jack - 1 jack + 1 hip

• Header is made of 2 plys of 38 x 220 mm.

• Header is made of 2 plys of 38 x 97 mm + a king post of 38 x 97 mm.

Characteristic capacity for ETC - Full nailing - F1, F2 - timber to timber - 2 hips

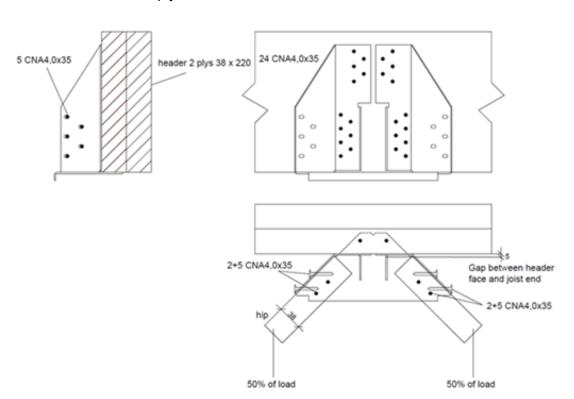
			Fast	eners -	CNA4.	0x35			Characteristic capacity [kN] - Timber C24						
Model	Header			Hip			Jack		D.			В			
Wiodei	Туре	pe Face Bo		Tumo	0.1	de Bottom	Type			R _{1,k} R _{2,k}					
			Bottom	Туре	Side		Туре	Side	Hip	Jack	Total	Hip	Jack	Total	
ETC392	1 Ply	24	2	1 Ply	5	2	-	-	9.54	-	19.09	5.80	-	11.61	

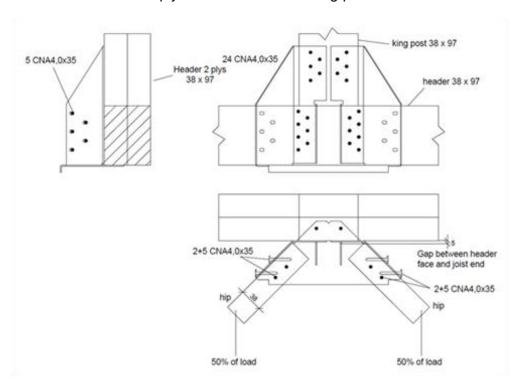

⁽¹⁾ Header and Joist height ≥ 97 mm

Spacings and edge distances shall be checked for the group of 10 nails located in the upper part of the hanger depending on the header depth and the vertical member dimension.

The resistance of the supporting and supported members shall be checked, in particular the *tension* perpendicular to the grain.

⁽²⁾ Header member can be made of 2 plies of 38 x 220 mm. When the header is composed of 2 plies of 38x97 mm, it requires the installation of a 1 ply vertical member (king post) of minimum width of 97 mm, directly above the header.

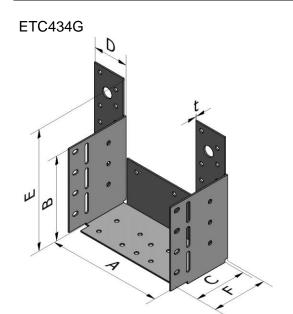

The nails in the central joist member are installed at approximately 20° - See image below.

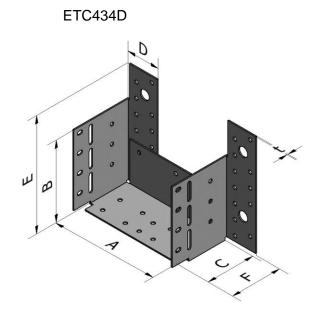

Nail pattern *ETC*392

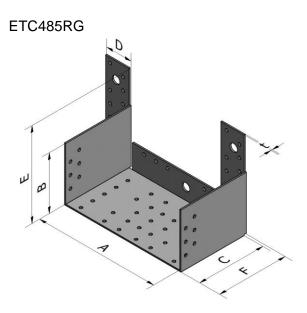
Nailing of the hips and jack - 2 hips

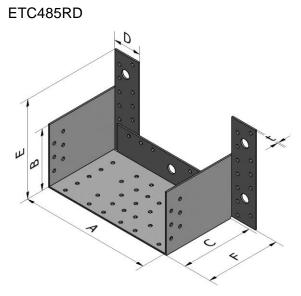
• Header is made of 2 plys of 38 x 220 mm.

• Header is made of 2 plys of 38 x 97 mm + a king post of 38 x 97 mm.



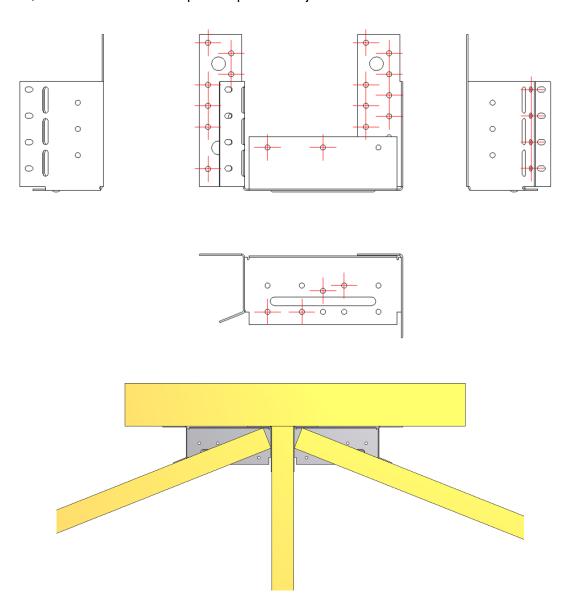

D13 ETC G/D Truss Connector


Product Name	Material reference acc. to clause II-1	Alternative Names
ETC G/D	Steel ref 1 - Steel ref 2	-


Dimensions

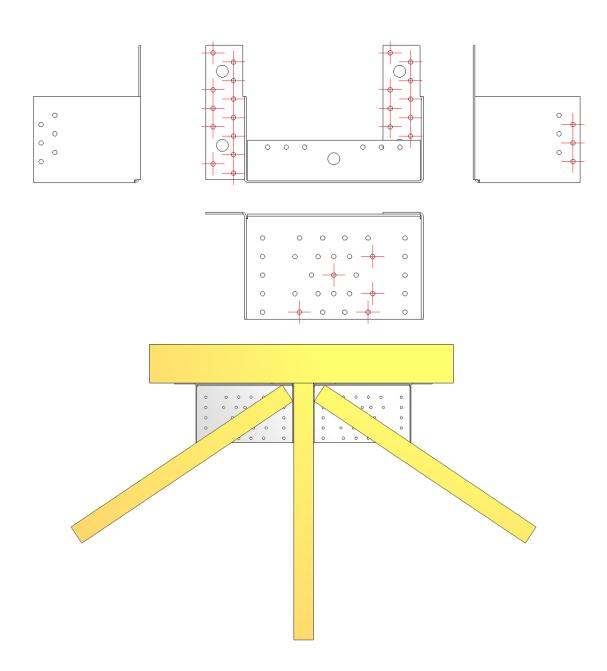
			Dimo	nsions	[mm]			Holes							
Model			Dillie	:11310113	[]			Header				Supported member			
	Α	В	С	D	Е	F	t	Qty	Size	Qty	Size	Qty	Size	Qty	Size
ETC434D	140	102	77.5	42	147	79.5	1.5	37	Ø5	3	Ø13	16	Ø5	8	Ø5x7.5
ETC434G	140	102	77.5	42	147	79.5	1.5	37	Ø5	3	Ø13	16	Ø5	8	Ø5x7.5
ETC485D	195	90	110	42	145	112	2	30	Ø5	5	Ø13	43	Ø5	-	-
ETC485G	195	90	110	42	145	112	2	30	Ø5	5	Ø13	43	Ø5	-	-
Permitted deviation	-	-	±1.0	±1.0	±1.0	±1.0	1	-	-			-	-		

Page 103 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07


Characteristic capacity for ETC G/D - Full nailing - F1 - timber to timber

Model		Faste	ners -	CNA4	.0x35			Characteristic capacity [kN] - C24			
		Hip			J	ack	R _{1,k}				
	Timber	Rigid support	Туре	Side	Bottom	Side	Bottom	Hip	Jack	Total	
ETC434G + ETC434D	40	40 6 Ø12		4	10	6	0	6.6	3.3	16.5	
ETC485RG + ETC485RD	C485RD 42 6 Ø12		1 Ply	3	8	6	0	7	3.5	17.5	

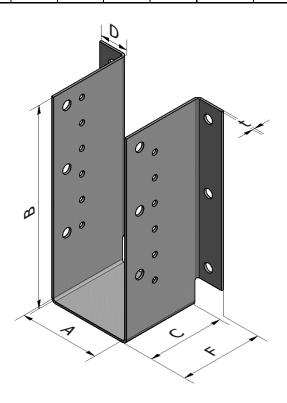
Nail pattern ETC434G + ETC434D Hangers


Single Jack and two single hips

For ETC434D, it is a mirror of the nail pattern presented just below.

ETC485RG + ETC485RD Hangers

Single Jack and two single hips For ETC485RD it is a mirror of the nail pattern presented just below.



D14 GBE Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GBE	Steel ref 1 - Steel ref 2 - Steel ref 3	-

Dimensions

		Dimon	cione [mm1			Holes							
Blank		Dillien	sions [ı				Hea	ader	Joist					
	Α	В	С	D	F	t	Qty	size	Qty	size	Qty	size		
600	75-225	(600-A)/2	145	54	156	4	4	Ø18	6	Ø11	4	Ø18		
750	75-225	(750-A)/2	145	54	156	4	4	Ø18	8	Ø11	4	Ø18		
900	75-225	(900-A)/2	145	54	156	4	6	Ø18	12	Ø11	6	Ø18		
1050	75-225	(1050-A)/2	145	54	156	4	6	Ø18	14	Ø11	6	Ø18		
1200	75-225	(1200-A)/2	145	54	156	4	8	Ø18	18	Ø11	8	Ø18		
1350	75-225	(1350-A)/2	145	54	156	4	8	Ø18	20	Ø11	8	Ø18		
1500	75-225	(1500-A)/2	145	54	156	4	10	Ø18	24	Ø11	10	Ø18		
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-		

Options:

- Holes for screws are optional
 The number and position of holes per flange can vary
 Bolts can be in class 4.6 to 10.9

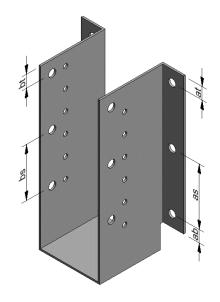
Parameters have to be used with equation in Annex C.

Parameters for Joist Hanger GBE

Standard GBE are as described in the table below:

Blank model	Qty of bolts/flange	Spacing of bolts on the header	Qty of bolts/joist	Spacing of bolts in the joist	Qty of screws in the joist	Spacing of screws in the joist	Υ	Ϋ́s	k _{b.h}	a
600	2	122.5	2	90	3	48	0.332	0.325	0.70	60
750	2	197.5	2	165	4	48	0.542	0.395	0.70	60
900	3	136	3	120	6	48	0.530	0.516	0.85	60
1050	3	173.5	3	157.5	7	48	0.634	0.567	0.85	60
1200	4	140.5	4	130	9	48	0.646	0.652	0.95	60
1350	4	165.5	4	155	10	48	0.710	0.687	0.95	60
1500	5	143	5	135	12	48	0.726	0.745	0.95	60

For other cases, calculation is made using following parameters :

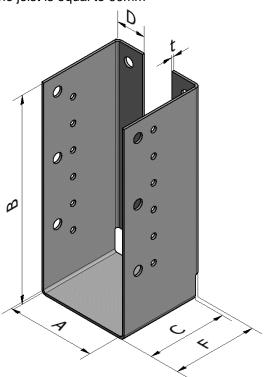

Qty bolts/flange	k _{b.h}
2	0,7
3	0,85
4	0,95
5	0,95

The table below gives values of γ depending of the number of bolts on the joist and the spacing of these bolts.

Qty of bolts in		γ factor depending of the spacing bolt joist [mm]													
the joist	90	100	120	140	160	180	200	250	300						
2	0,33	0,36	0,42	0,48	0,53	0,58	0,62	0,70	0,76						
3	0,42	0,46	0,53	0,59	0,64	0,68	0,72	0,79	0,84						
4	0,51	0,55	0,62	0,67	0,72	0,76	0,79	0,85	0,89						
5	0,58	0,62	0,68	0,74	0,78	0,81	0,84	0,89	0,92						

Additional information:

- The minimum number of bolts per flange is equal to 2
- The distance of the holes to the top of the flange shall fulfill : 28 mm \leq at \leq 50 mm
- The distance of the holes to the bottom of the flange shall fulfill : 28 mm $\leq ab \leq$ 50 mm
- The distance of the holes to the top of the side shall fulfill: 28 mm $\leq bt \leq$ 50 mm
- The number of bolts on the joist and per flange should be the same
- The bolt on the joist must be inserted starting from the lowest and going up
- The same number of bolts must be inserted in each flange and positioned symmetrically
- Minimum spacing between bolts on the header "as" is equal to 120 mm
- Minimum spacing between bolts on the joist "bs" is equal to 60 mm


D15 **GBI Joist hanger**

Product Name	Material reference acc. to clause II-1	Alternative Names
GBI	Steel ref 1 - Steel ref 2	-

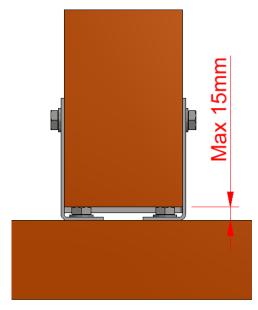
Dimensions

		Dimo	nciono	[mm]			Holes							
Blank		Dillie	nsions	[111111]			Hea	der	Joist					
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size		
600	120-225	(600-A)/2	145	54	156	4	4	Ø18	6	Ø11	4	Ø18		
750	120-225	(750-A)/2	145	54	156	4	4	Ø18	8	Ø11	4	Ø18		
900	120-225	(900-A)/2	145	54	156	4	6	Ø18	12	Ø11	6	Ø18		
1050	120-225	(1050-A)/2	145	54	156	4	6	Ø18	14	Ø11	6	Ø18		
1200	120-225	(1200-A)/2	145	54	156	4	8	Ø18	18	Ø11	8	Ø18		
1350	120-225	(1350-A)/2	145	54	156	4	8	Ø18	20	Ø11	8	Ø18		
1500	120-225	(1500-A)/2	145	54	156	4	10	Ø18	24	Ø11	10	Ø18		
Permitted deviation	-	-	±1.0	±1.0	±1.0	ı	-	-	- 1	-	1	-		

Minimum spacing between bolts on the header is equal to 120mm Minimum spacing between bolts on the joist is equal to 60mm

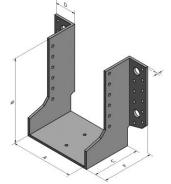
Options:

- Holes for screws are optional
 The number and position of holes per flange can vary.
 Bolts can be in class 4.6 to 10.9


Page 108 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Parameters have to be used with equation in Annex C

Parameters for Joist Hanger GBI


Blank model	Qty Bolt flange	Spacing on header	Qty of bolt joist	Spacing bolt joist	Qty screws Joist	Spacing Screw joist	γ	γs	k _{b.h}	а
600	2	122.5	2	90	3	48	0.332	0.325	0.7	60
750	2	197.5	2	165	4	48	0.542	0.395	0.7	60
900	3	136	3	120	6	48	0.53	0.516	0.85	60
1050	3	173.5	3	157.5	7	48	0.634	0.567	0.85	60
1200	4	140.5	4	130	9	48	0.646	0.652	0.95	60
1350	4	165.5	4	155	10	48	0.71	0.687	0.95	60
1500	5	143	5	135	12	48	0.726	0.745	0.95	60

Maximum distance to the end of the joist for internal flange version.

D16 GLE Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GLE	Steel ref 1 - Steel ref 2	-

Dimensions

		5.							Н	loles		
Blank		Dime	nsions	[mm]				Hea	der		Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
300/2.5X	32-110	(300-A)/2	90	38.5	95	2.5	12	Ø5	2	Ø14	7	Ø5
340/2.5X	32-110	(340-A)/2	90	38.5	95	2.5	16	Ø5	2	Ø14	9	Ø5
380/2.5X	32-110	(380-A)/2	90	38.5	95	2.5	20	Ø5	2	Ø14	11	Ø5
440/2.5X	32-160	(440-A)/2	90	38.5	95	2.5	20	Ø5	4	Ø14	12	Ø5
500/2.5X	32-160	(500-A)/2	90	38.5	95	2.5	26	Ø5	4	Ø14	15	Ø5
540/2.5X	32-160	(540-A)/2	90	38.5	95	2.5	30	Ø5	4	Ø14	17	Ø5
600/2.5X	32-160	(600-A)/2	90	38.5	95	2.5	36	Ø5	4	Ø14	20	Ø5
660/2.5X	32-160	(660-A)/2	90	38.5	95	2.5	40	Ø5	6	Ø14	23	Ø5
720/2.5X	32-160	(720-A)/2	90	38.5	95	2.5	46	Ø5	6	Ø14	26	Ø5
780/2.5X	32-160	(780-A)/2	90	38.5	95	2.5	48	Ø5	6	Ø14	29	Ø5
840/2.5X	32-160	(840-A)/2	90	38.5	95	2.5	54	Ø5	6	Ø14	32	Ø5
900/2.5X	32-160	(900-A)/2	90	38.5	95	2.5	60	Ø5	6	Ø14	35	Ø5
960/2.5X	32-160	(960-A)/2	90	38.5	95	2.5	64	Ø5	8	Ø14	38	Ø5
1020/2.5X	32-160	(1020-A)/2	90	38.5	95	2.5	70	Ø5	8	Ø14	41	Ø5
300/4X	32-110	(300-A)/2	90	40	98	4	12	Ø5	2	Ø14	7	Ø5
340/4X	32-110	(340-A)/2	90	40	98	4	16	Ø5	2	Ø14	9	Ø5
380/4X	32-110	(380-A)/2	90	40	98	4	20	Ø5	2	Ø14	11	Ø5
440/4X	32-160	(440-A)/2	90	40	98	4	20	Ø5	4	Ø14	12	Ø5
500/4X	32-160	(500-A)/2	90	40	98	4	26	Ø5	4	Ø14	15	Ø5
540/4X	32-160	(540-A)/2	90	40	98	4	30	Ø5	4	Ø14	17	Ø5
600/4X	32-160	(600-A)/2	90	40	98	4	36	Ø5	4	Ø14	20	Ø5
660/4X	32-160	(660-A)/2	90	40	98	4	40	Ø5	6	Ø14	23	Ø5
720/4X	32-160	(720-A)/2	90	40	98	4	46	Ø5	6	Ø14	26	Ø5
780/4X	32-160	(780-A)/2	90	40	98	4	48	Ø5	6	Ø14	29	Ø5
840/4X	32-160	(840-A)/2	90	40	98	4	54	Ø5	6	Ø14	32	Ø5
900/4X	32-160	(900-A)/2	90	40	98	4	60	Ø5	6	Ø14	35	Ø5
960/4X	32-160	(960-A)/2	90	40	98	4	64	Ø5	8	Ø14	38	Ø5
1020/4X	32-160	(1020-A)/2	90	40	98	4	70	Ø5	8	Ø14	41	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C

 $k_{\text{H,1}}$ for Joist Hanger GLE and GLI - Full nailing - F1

						F	ull nailin							
								Model	_		_			
	n _H	n _J	n _H	40 nյ	n _H	80 n _J	n _H	40 nյ	n _H	00 n,	n _H	i40 n _J	n _H	00 n,
	12	7	16	9	20	11	20	12	26	15	30	17	36	20
Α	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1
32	134	24,2	154	33,1	174	43,3	204	55,8	234	78,4	254	94,3	284	121,7
34 36	133 132	23,9 23,5	153 152	32,7 32,3	173 172	42,9 42,4	203 202	55,3 54,8	233 232	77,8 77,1	253 252	93,6 92,9	283 282	120,8 120,0
38	131	23,5	152	31,9	172	42,4	202	54,8	232	76,5	252	92,9	281	119,2
40	130	22,9	150	31,5	170	41,4	200	53,8	230	75,9	250	91,5	280	118,4
42	129	22,5	149	31,1	169	40,9	199	53,3	229	75,3	249	90,8	279	117,6
44	128	22,2	148	30,7	168	40,4	198	52,8	228	74,7	248	90,1	278	116,8
46 48	127 126	21,9 21,6	147 146	30,3 29,9	167 166	39,9 39,5	197 196	52,3 51,8	227 226	74,0 73,4	247 246	89,4 88,7	277 276	115,9 115,1
50	125	21,3	145	29,5	165	39,0	195	51,3	225	72,8	245	88,0	275	114,3
52	124	20,9	144	29,1	164	38,5	194	50,8	224	72,2	244	87,3	274	113,5
54	123	20,6	143	28,7	163	38,0	193	50,3	223	71,6	243	86,6	273	112,7
56 58	122 121	20,3	142 141	28,3 27,9	162 161	37,6 37,1	192 191	49,8 49,3	222 221	70,9 70,3	242 241	85,9 85,3	272 271	111,9 111,1
60	120	19,7	141	27,5	160	36,6	190	49,3	220	69,7	240	84,6	270	110,3
62	119	19,3	139	27,1	159	36,1	189	48,3	219	69,1	239	83,9	269	109,5
64	118	19,0	138	26,7	158	35,7	188	47,8	218	68,5	238	83,2	268	108,7
66	117	18,7	137	26,3	157	35,2	187	47,3	217	67,9	237	82,5	267	107,9
68 70	116 115	18,4 18,1	136 135	25,9 25,5	156 155	34,7 34,3	186 185	46,9 46,4	216 215	67,3 66,7	236 235	81,8 81,1	266 265	107,1 106,3
72	114	17,8	134	25,1	154	33,8	184	45,9	214	66,1	234	80,5	264	105,5
74	113	17,5	133	24,7	153	33,4	183	45,4	213	65,5	233	79,8	263	104,7
76	112	17,1	132	24,4	152	32,9	182	44,9	212 211	64,9	232	79,1	262	103,9
78 80	111 110	16,8 16,5	131 130	24,0 23,6	151 150	32,5 32,0	181 180	44,4 43,9	210	64,3 63,7	231 230	78,4 77,7	261 260	103,1 102,3
82	109	16,2	129	23,2	149	31,5	179	43,5	209	63,1	229	77,1	259	101,6
84	108	15,9	128	22,8	148	31,1	178	43,0	208	62,5	228	76,4	258	100,8
86	107	15,6	127	22,5	147	30,6	177	42,5	207	61,9	227	75,7	257	100,0
88 90	106 105	15,3 15,0	126 125	22,1 21,7	146 145	30,2 29,8	176 175	42,0 41,6	206 205	61,3 60,7	226 225	75,1 74,4	256 255	99,2 98,4
92	103	14,7	123	21,7	143	29,3	173	41,1	204	60,1	224	73,7	254	97,6
94	103	14,4	123	21,0	143	28,9	173	40,6	203	59,5	223	73,1	253	96,9
96	102	14,1	122	20,6	142	28,4	172	40,1	202	58,9	222	72,4	252	96,1
98 100	101 100	13,8 13,5	121 120	20,2 19,9	141 140	28,0 27,6	171 170	39,7 39,2	201 200	58,3 57,7	221 220	71,7 71,1	251 250	95,3 94,6
102	99	13,3	119	19,5	139	27,0	169	38.7	199	57,7	219	71,1	249	93.8
104	98	13,0	118	19,2	138	26,7	168	38,3	198	56,6	218	69,8	248	93,0
106	97	12,7	117	18,8	137	26,3	167	37,8	197	56,0	217	69,1	247	92,3
108	96	12,4 12,1	116 115	18,4 18,1	136 135	25,9 25,4	166	37,3	196	55,4 54,8	216 215	68,5 67,8	246 245	91,5 90,7
110 112	95	-	-	-	133	25,4	165 164	36,9 36,4	195 194	54,8	214	67,8	245	90,7
114		-	-	-	-	-	163	35,9	193	53,7	213	66,5	243	89,2
116	-	-	-	-	-	-	162	35,5	192	53,1	212	65,9	242	88,5
118 120	-	-	-	-	-	-	161 160	35,0 34,6	191 190	52,6 52,0	211 210	65,2	241 240	87,7 87,0
120	:	-					159	34,6	190	52,0 51,4	210	64,6 63,9	239	87,0 86,2
124] .	-	-	-	-	-	158	33,7	188	50,9	208	63,3	238	85,5
126	-	-	-	-	-	-	157	33,2	187	50,3	207	62,7	237	84,7
128		-	-	-	-	-	156	32,8	186	49,7	206	62,0	236	84,0
130 132	:	-					155 154	32,3 31,9	185 184	49,2 48,6	205 204	61,4 60,8	235 234	83,2 82,5
134	1 -	-	-	-	-	-	153	31,4	183	48,1	203	60,2	233	81,8
136] -	-	-	-	-	-	152	31,0	182	47,5	202	59,5	232	81,0
138		-	-	-	-	-	151	30,6	181	47,0	201	58,9	231	80,3
140 142	1		-		-	-	150 149	30,1 29,7	180 179	46,4 45,9	200 199	58,3 57,7	230 229	79,6 78,9
144	1 :	-			:		149	29,7	179	45,9	199	57,7	229	78,1
146] -	-	-	-	-	-	147	28,8	177	44,8	197	56,4	227	77,4
148	-	-	-	-	-	-	146	28,4	176	44,3	196	55,8	226	76,7
150	· ·	-	-	-	-	-	145	28,0 27,6	175	43,7	195 194	55,2	225 224	76,0
152 154	:	-					144 143	27,6	174 173	43,2 42,7	194 193	54,6 54,0	224	75,3 74,6
156		-	-	-	-	-	142	26,7	172	42,1	192	53,4	222	73,9
158] -	-	-	-	-	-	141	26,3	171	41,6	191	52,8	221	73,2
160	-	-	-	-	-	-	140	25,9	170	41,1	190	52,2	220	72,5

$k_{\text{H},1}$ for Joist Hanger GLE and GLI - Full nailing - F1

						F	ull nailin	g						
							Blank	Model						
	n _H	60 n _J	n _H	20 n _J	n _H	80 n _J	n _H	40 nյ	n _H	00 n _J	n _H	060 n _J	n _H	020 n _J
	40	23	46	26	48	29	54	32	60	35	64	38	70	41
Α	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1
32 34	314 313	142,9 142,0	344 343	176,8 175,8	374 373	208,4 207,4	404 403	247,3 246,1	434 433	287,1 285,8	464 463	323,5 322,2	494 493	369,8 368,3
36	312	141,1	342	174,8	372	206,3	402	244,9	432	284,5	462	320,8	492	366,9
38	311	140,2	341	173,8	371	205,2	401	243,7	431	283,2	461	319,5	491	365,4
40 42	310 309	139,3 138,4	340 339	172,8 171,9	370 369	204,2 203,1	400 399	242,6 241,4	430 429	282,0 280,7	460 459	318,1 316,8	490 489	364,0 362,5
44	308	137,6	338	170,9	368	202,1	398	240,2	428	279,4	458	315,4	488	361,0
46 48	307 306	136,7 135,8	337 336	169,9 168,9	367 366	201,0	397 396	239,0 237.9	427 426	278,1 276,8	457 456	314,1 312.7	487 486	359,6 358.1
50	305	134,9	335	167,9	365	198,9	395	236,7	425	275,6	455	312,7	485	356,7
52	304	134,1	334	166,9	364	197,8	394	235,5	424	274,3	454	310,1	484	355,2
54 56	303 302	133,2 132,3	333 332	165,9 164,9	363 362	196,8 195,7	393 392	234,4 233,2	423 422	273,0 271,7	453 452	308,7 307,4	483 482	353,8 352.3
58	301	131,5	331	164,0	361	194,7	391	232,1	421	270,5	451	306,0	481	350,9
60	300	130,6	330	163,0	360	193,6	390	230,9	420	269,2	450	304,7	480	349,4
62 64	299 298	129,7 128,9	329 328	162,0 161,0	359 358	192,6 191,5	389 388	229,7 228,6	419 418	267,9 266,7	449 448	303,4 302,0	479 478	348,0 346,5
66	296	128,0	327	160,0	357	190,5	387	227,4	417	265,4	446	300,7	477	345,1
68	296	127,1	326	159,1	356	189,5	386	226,3	416	264,1	446	299,4	476	343,7
70 72	295 294	126,3 125,4	325 324	158,1 157,1	355 354	188,4 187,4	385 384	225,1 224,0	415 414	262,9 261,6	445 444	298,0 296,7	475 474	342,2 340,8
74	293	124,6	323	156,2	353	186,3	383	222,8	413	260,4	443	295,4	473	339,4
76	292	123,7	322	155,2	352	185,3	382	221,7	412	259,1	442	294,1	472	337,9
78 80	291 290	122,9 122,0	321 320	154,2 153,3	351 350	184,3 183,2	381 380	220,5 219,4	411 410	257,8 256,6	441 440	292,8 291,4	471 470	336,5 335,1
82	289	121,2	319	152,3	349	182,2	379	218,2	409	255,3	439	290,1	469	333,6
84	288	120,3	318	151,4	348	181,2	378	217,1	408	254,1	438	288,8	468	332,2
86 88	287 286	119,5 118,6	317 316	150,4 149,5	347 346	180,1 179,1	377 376	216,0 214,8	407 406	252,9 251,6	437 436	287,5 286,2	467 466	330,8 329,4
90	285	117,8	315	148,5	345	178,1	375	213,7	405	250,4	435	284,9	465	328,0
92 94	284 283	117,0 116,1	314 313	147,6 146,6	344 343	177,1 176,0	374 373	212,6 211,4	404 403	249,1 247,9	434 433	283,6 282,3	464 463	326,5 325,1
96	282	115,3	312	145,7	343	175,0	373	210,3	403	247,9	433	281,0	462	323,7
98	281	114,4	311	144,7	341	174,0	371	209,2	401	245,4	431	279,7	461	322,3
100 102	280 279	113,6 112,8	310 309	143,8 142,8	340 339	173,0 172,0	370 369	208,0 206,9	400 399	244,2 243,0	430 429	278,4 277,1	460 459	320,9 319,5
104	278	112,0	308	141,9	338	172,0	368	205,8	398	243,0	428	275,8	458	318,1
106	277	111,1	307	141,0	337	169,9	367	204,7	397	240,5	427	274,5	457	316,7
108 110	276 275	110,3 109,5	306 305	140,0 139,1	336 335	168,9 167,9	366 365	203,6 202,4	396 395	239,3 238,0	426 425	273,2 271,9	456 455	315,3 313,9
112	274	108,7	304	138,2	334	166,9	364	201,3	394	236,8	424	270,6	454	312,5
114	273	107,9	303	137,2	333	165,9	363	200,2	393	235,6	423	269,3	453	311,1
116 118	272 271	107,0 106,2	302 301	136,3 135,4	332 331	164,9 163,9	362 361	199,1 198,0	392 391	234,4 233,2	422 421	268,0 266,8	452 451	309,7 308,3
120	270	105,4	300	134,5	330	162,9	360	196,9	390	232,0	420	265,5	450	307,0
122 124	269 268	104,6	299 298	133,6	329 328	161,9	359	195,8	389 388	230,8	419 418	264,2	449 448	305,6
124	268	103,8 103,0	298	132,6 131,7	328	160,9 159,9	358 357	194,7 193,6	388	229,5 228,3	418	262,9 261,7	448	304,2 302,8
128	266	102,2	296	130,8	326	158,9	356	192,5	386	227,1	416	260,4	446	301,4
130 132	265 264	101,4 100,6	295 294	129,9 129,0	325 324	157,9 156,9	355 354	191,4 190,3	385 384	225,9 224,7	415 414	259,1 257,9	445 444	300,1 298,7
134	263	99,8	294	129,0	324	155,9	353	189,2	383	223,5	414	257,9	444	298,7
136	262	99,0	292	127,2	322	155,0	352	188,1	382	222,3	412	255,3	442	295,9
138 140	261 260	98,2 97.4	291 290	126,3 125,4	321 320	154,0 153,0	351 350	187,0 185,9	381 380	221,1 220,0	411 410	254,1 252.8	441 440	294,6 293,2
142	259	96,7	289	124,5	319	152,0	349	184,9	379	218,8	409	251,6	439	291,9
144	258	95,9	288	123,6	318	151,0	348	183,8	378	217,6	408	250,3	438	290,5
146 148	257 256	95,1 94,3	287 286	122,7 121,9	317 316	150,1 149,1	347 346	182,7 181,6	377 376	216,4 215,2	407 406	249,1 247,8	437 436	289,1 287,8
150	255	93,5	285	121,9	315	148,1	345	180,5	375	214,0	405	246,6	435	286,4
152	254	92,8	284	120,1	314	147,2	344	179,5	374	212,9	404	245,3	434	285,1
154 156	253 252	92,0 91,2	283 282	119,2 118,3	313 312	146,2 145,2	343 342	178,4 177,3	373 372	211,7 210,5	403 402	244,1 242,8	433 432	283,7 282,4
158	251	90,5	281	117,5	311	144,3	341	176,3	371	209,3	402	241,6	432	281,1
160	250	89,7	280	116,6	310	143,3	340	175,2	370	208,2	400	240,4	430	279,7

$k_{\text{H},1}$ for Joist Hanger GLE and GLI - Partial nailing - F1

						Pa	rtial naili							
								Model	_					
	n _H	00 n _{.i}	n _H	40 nյ	n _H	80 n,		40 nյ	n _H	00 n,	n _H	140 n _J	n _H	00 n _J
	6	4	8	5	10	6	п _н 8	6	12	8	14	9	16	10
Width	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1
32	134	13,2	154	17,6	174	22,7	204	32,2	234	39,1	254	47,2	284	59,8
34 36	133 132	13,1 12,9	153 152	17,4 17,2	173 172	22,5 22,2	203 202	32,0 31,7	233 232	38,8 38,5	253 252	46,9 46,5	283 282	59,4 59,0
38	131	12,7	151	17,0	171	21,9	201	31,5	231	38,2	251	46,2	281	58,7
40	130	12,5	150	16,8	170	21,7	200	31,2	230	37,9	250	45,8	280	58,3
42 44	129 128	12,4 12,2	149 148	16,6 16,3	169 168	21,4 21,2	199 198	31,0 30,8	229 228	37,6 37,3	249 248	45,5 45,1	279 278	57,9 57,5
46	127	12,2	147	16,1	167	20,9	197	30,5	227	37,0	247	44,8	277	57,5
48	126	11,8	146	15,9	166	20,7	196	30,3	226	36,7	246	44,4	276	56,7
50	125	11,7	145	15,7	165	20,4	195	30,1	225	36,4	245	44,1	275	56,3
52 54	124 123	11,5 11,3	144 143	15,5 15,3	164 163	20,2 19,9	194 193	29,8 29,6	224 223	36,1 35,8	244 243	43,7 43,4	274 273	55,9 55,5
56	122	11,1	142	15,1	162	19,7	192	29,4	222	35,4	242	43,0	272	55,1
58	121	11,0	141	14,8	161	19,4	191	29,1	221	35,1	241	42,7	271	54,7
60 62	120 119	10,8 10,6	140 139	14,6 14,4	160 159	19,2 18,9	190 189	28,9 28,7	220 219	34,8 34,5	240 239	42,4 42,0	270 269	54,4 54,0
64	118	10,6	138	14,4	158	18,7	188	28,4	218	34,5	238	42,0	268	53,6
66	117	10,3	137	14,0	157	18,4	187	28,2	217	33,9	237	41,3	267	53,2
68	116	10,1	136	13,8	156	18,2	186	28,0	216 215	33,6	236	41,0	266	52,8
70 72	115 114	9,9 9,8	135 134	13,6 13,4	155 154	17,9 17,7	185 184	27,7 27,5	215	33,3 33,1	235 234	40,7 40,3	265 264	52,4 52,0
74	113	9,6	133	13,2	153	17,4	183	27,3	213	32,8	233	40,0	263	51,7
76	112	9,4	132	13,0	152	17,2	182	27,0	212	32,5	232	39,7	262	51,3
78 80	111 110	9,3 9,1	131 130	12,8 12,6	151 150	17,0 16,7	181 180	26,8 26,6	211 210	32,2 31,9	231 230	39,3 39,0	261 260	50,9
82	109	9,1	129	12,6	149	16,7	179	26,3	209	31,6	229	38,6	259	50,5 50,1
84	108	8,8	128	12,2	148	16,3	178	26,1	208	31,3	228	38,3	258	49,8
86	107	8,6	127	12,0	147	16,0	177	25,9	207	31,0	227	38,0	257	49,4
88 90	106 105	8,5 8,3	126 125	11,8 11,6	146 145	15,8 15,6	176 175	25,6 25,4	206 205	30,7 30,4	226 225	37,7 37,3	256 255	49,0 48,6
92	104	8,2	124	11,4	144	15,3	174	25,2	204	30,1	224	37,0	254	48,2
94	103	8,0	123	11,2	143	15,1	173	24,9	203	29,8	223	36,7	253	47,9
96 98	102 101	7,8 7.7	122 121	11,0 10,8	142 141	14,9 14,6	172 171	24,7 24,5	202 201	29,5 29.2	222 221	36,3 36,0	252 251	47,5 47,1
100	100	7,7	120	10,6	140	14,6	170	24,3	200	29,2	220	35,7	250	46,7
102	99	7,4	119	10,4	139	14,2	169	24,0	199	28,7	219	35,4	249	46,4
104	98	7,2	118	10,3	138	14,0	168	23,8	198	28,4	218	35,0	248	46,0
106 108	97 96	7,1 6,9	117 116	10,1 9,9	137 136	13,7 13,5	167 166	23,6 23,3	197 196	28,1 27,8	217 216	34,7 34,4	247 246	45,6 45,3
110	95	6,8	115	9,7	135	13,3	165	23,1	195	27,5	215	34,1	245	44,9
112		-		-	-	-	164	22,9	194	27,3	214	33,7	244	44,5
114 116	-	-	-	-	-	-	163 162	22,7 22,4	193 192	27,0 26,7	213 212	33,4 33,1	243 242	44,2 43,8
118		-	-	-	-	-	161	22,4	192	26,7	212	33,1	242	43,8
120	-	-	-	-	-	-	160	22,0	190	26,1	210	32,5	240	43,1
122	-	-	-	-	-	-	159	21,8	189	25,9	209	32,2	239	42,7
124 126	-	-	-	-	-	-	158 157	21,5 21,3	188 187	25,6 25,3	208 207	31,8 31,5	238 237	42,3 42,0
128		-		-	-	-	156	21,1	186	25,0	206	31,2	236	41,6
130	-	-	-	-	-	-	155	20,9	185	24,8	205	30,9	235	41,2
132 134	-	-	-	-	-	-	154 153	20,6 20,4	184 183	24,5 24,2	204 203	30,6 30,3	234 233	40,9 40,5
134	-	-	-		-	-	153 152	20,4	183 182	23,9	203	30,3	233	40,5
138		-		-	-	-	151	20,0	181	23,7	201	29,7	231	39,8
140	-	-		-	-	-	150	19,7	180	23,4	200	29,4	230	39,5
142 144	-	-	-	-	-	-	149 148	19,5 19,3	179 178	23,1 22,9	199 198	29,1 28,7	229 228	39,1 38,8
146		-	-	-	-	-	147	19,1	177	22,6	197	28,4	227	38,4
148	-	-	-	-	-	-	146	18,9	176	22,3	196	28,1	226	38,1
150	-	-	-	-	-	-	145	18,6	175	22,1	195	27,8	225	37,7
152 154	 	-	- : -		-	-	144 143	18,4 18,2	174 173	21,8 21,6	194 193	27,5 27,2	224 223	37,4 37,0
156	<u> </u>	-		-	-	-	142	18,0	173	21,3	192	27,0	222	36,7
158	-	-	-	-	-	-	141	17,8	171	21,0	191	26,7	221	36,3
160		-	-	-	-	-	140	17,5	170	20,8	190	26,4	220	36,0

$k_{\text{H},1}$ for Joist Hanger GLE and GLI - Partial nailing - F1

						Pa	rtial naili	ng						
							Blank	Model						
		60 n _J		20 n _J	78			40		00 n _J		60)20
	n _H 18	12	n _H 20	14	n _H 22	n J 15	n _H 24	n յ 16	n _H 28	18	n _H 28	n J 20	n _H 32	n J 21
Width	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1
32 34	314 313	67,8 67,4	344 343	83,0 82,5	374 373	100,9 100,3	404 403	118,2 117,6	434 433	139,6 139,0	464 463	150,1 149,5	494 493	199,7 198,9
36	312	66,9	343	82,1	373	99,8	403	117,0	433	139,0	463	149,5	493	198,9
38	311	66,5	341	81,6	371	99,3	401	116,5	431	137,7	461	148,3	491	197,4
40 42	310 309	66,1	340	81,1	370 369	98,8	400	115,9	430 429	137,1	460 459	147,6 147,0	490 489	196,7
44	309	65,7 65,3	339 338	80,7 80,2	368	98,3 97,8	399 398	115,4 114,8	429	136,5 135,8	459 458	147,0	489	195,9 195,2
46	307	64,9	337	79,8	367	97,3	397	114,3	427	135,2	457	145,8	487	194,4
48	306	64,5	336	79,3	366	96,8	396	113,7	426	134,6	456	145,2	486	193,7
50 52	305 304	64,0 63,6	335 334	78,9 78,4	365 364	96,3 95,8	395 394	113,2 112,6	425 424	134,0 133,4	455 454	144,6 143,9	485 484	192,9 192,2
54	303	63,2	333	78,0	363	95,3	393	112,0	423	132,7	453	143,3	483	191,4
56	302	62,8	332	77,5	362	94,8	392	111,5	422	132,1	452	142,7	482	190,7
58	301	62,4	331	77,0	361	94,3	391	111,0	421	131,5	451 450	142,1	481	189,9
60 62	300 299	62,0 61,6	330 329	76,6 76,1	360 359	93,8 93,2	390 389	110,4 109,9	420 419	130,9 130,3	450 449	141,5 140,9	480 479	189,2 188,4
64	298	61,2	328	75,7	358	92,7	388	109,4	418	129,7	448	140,3	478	187,7
66	297	60,8	327	75,2	357	92,2	387	108,8	417	129,1	447	139,7	477	187,0
68 70	296 295	60,4 60.0	326 325	74,8 74,3	356 355	91,7 91.2	386 385	108,3 107.7	416 415	128,4 127,8	446 445	139,0 138.4	476 475	186,2 185,5
72	294	59,6	324	73,9	354	90,7	384	107,7	414	127,0	444	137,8	474	184,7
74	293	59,2	323	73,5	353	90,2	383	106,6	413	126,6	443	137,2	473	184,0
76 78	292 291	58,8 58,4	322 321	73,0 72,6	352	89,7	382 381	106,1	412 411	126,0	442 441	136,6	472 471	183,3
80	290	58,0	320	72,0	351 350	89,3 88,8	380	105,6 105,0	410	125,4 124,8	440	136,0 135,4	471	182,5 181,8
82	289	57,6	319	71,7	349	88,3	379	104,5	409	124,2	439	134,8	469	181,0
84	288	57,2	318	71,2	348	87,8	378	103,9	408	123,6	438	134,2	468	180,3
86 88	287 286	56,8 56,4	317 316	70,8 70,3	347 346	87,3 86,8	377 376	103,4 102,9	407 406	123,0 122,4	437 436	133,6 133,0	467 466	179,6 178,8
90	285	56,0	315	69,9	345	86,3	375	102,3	405	121,8	435	132,4	465	178,1
92	284	55,6	314	69,5	344	85,8	374	101,8	404	121,2	434	131,8	464	177,4
94 96	283 282	55,2 54,8	313 312	69,0 68,6	343 342	85,3 84.8	373 372	101,3 100.7	403 402	120,6 120.0	433 432	131,2 130,6	463 462	176,6 175,9
98	281	54,4	311	68,2	341	84,3	371	100,7	401	119,4	431	130,0	461	175,3
100	280	54,0	310	67,7	340	83,8	370	99,6	400	118,8	430	129,4	460	174,4
102 104	279	53,6 53,2	309	67,3 66,9	339	83,3 82,9	369	99,1	399	118,2	429 428	128,8	459 458	173,7
104	278 277	52,9	308 307	66,4	338 337	82,4	368 367	98,6 98,1	398 397	117,6 117,0	420	128,2 127,6	456	173,0 172,2
108	276	52,5	306	66,0	336	81,9	366	97,5	396	116,4	426	127,0	456	171,5
110	275	52,1	305	65,6	335	81,4	365	97,0	395	115,8	425	126,4	455	170,8
112 114	274 273	51,7 51,3	304 303	65,1 64,7	334 333	80,9 80,4	364 363	96,5 95,9	394 393	115,2 114,6	424 423	125,8 125,2	454 453	170,1 169,3
116	272	50,9	302	64,3	332	79,9	362	95,4	392	114,0	422	124,6	452	168,6
118	271	50,6	301	63,8	331	79,5	361	94,9	391	113,4	421	124,0	451	167,9
120 122	270 269	50,2 49,8	300 299	63,4	330 329	79,0 78,5	360 359	94,4 93,8	390 389	112,8	420 419	123,5 122,9	450 449	167,2 166,4
124	268	49,8	299	63,0 62,6	329	78,5 78,0	359	93,8	389	112,3 111,7	419	122,9	449	165,7
126	267	49,0	297	62,1	327	77,6	357	92,8	387	111,1	417	121,7	447	165,0
128	266	48,7	296	61,7	326	77,1	356	92,3	386	110,5	416	121,1	446	164,3
130 132	265 264	48,3 47,9	295 294	61,3 60,9	325 324	76,6 76,1	355 354	91,8 91,2	385 384	109,9 109,3	415 414	120,5 119,9	445 444	163,5 162,8
134	263	47,5	293	60,5	323	75,6	353	90,7	383	108,7	413	119,4	443	162,1
136	262	47,2	292	60,0	322	75,2	352	90,2	382	108,2	412	118,8	442	161,4
138 140	261 260	46,8 46,4	291 290	59,6 59,2	321 320	74,7 74,2	351 350	89,7 89,2	381 380	107,6 107,0	411 410	118,2 117,6	441 440	160,7 159,9
142	259	46,1	289	58,8	319	73,8	349	88,7	379	107,0	409	117,0	439	159,9
144	258	45,7	288	58,4	318	73,3	348	88,1	378	105,9	408	116,5	438	158,5
146	257	45,3	287	58,0	317	72,8	347	87,6	377	105,3	407	115,9	437	157,8
148 150	256 255	45,0 44,6	286 285	57,6 57,1	316 315	72,4 71,9	346 345	87,1 86,6	376 375	104,7 104,1	406 405	115,3 114,7	436 435	157,1 156,4
152	254	44,0	284	56,7	314	71,9	344	86,1	374	104,1	404	114,7	434	155,6
154	253	43,9	283	56,3	313	71,0	343	85,6	373	103,0	403	113,6	433	154,9
156	252	43,5	282	55,9	312 311	70,5	342	85,1	372	102,4	402	113,0	432	154,2
158 160	251 250	43,2 42,8	281 280	55,5 55,1	311	70,0 69,6	341 340	84,6 84,1	371 370	101,9 101,3	401 400	112,5 111,9	431 430	153,5 152,8

$k_{\text{H,2}}$ for GLE and GLI - Full or partial nailing - F2

Blank		nber of nails header	i	C _{H2}
	Full nailing	Partial nailing	Full nailing	Partial nailing
300	12	6	10.1	5.6
340	16	8	15.8	8.8
380	20	10	22.7	12.5
440	20	8	22.8	6.7
500	26	12	34.5	16.2
540	30	14	43.9	20.7
600	36	16	59.9	25.8
660	40	18	76.3	35.1
720	46	20	96.4	41.2
780	48	22	106	49.7
840	54	24	131	58.2
900	60	28	158.9	75.9
960	64	28	183.2	80.4
1020	70	32	214.9	99.9

Characteristic capacities for GLE/2.5X - with connector screw SSH/SSF

		Pr	oduct	capacities	- Timber	to Timb	er - Lar	ge conn	ector sc	rew		
		Fastene	rs			Ch	aracteri	stic cap	acities -	Timber	C24	
Blank		Header		Joist		R1	1.k			R	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GLE300/2.5X	2	SSH12.0x60 (1)	7	CNA*	10,6	11,0	11,6	11,7	9,9	10,3	11,1	11,3
GLE340/2.5X	2	SSH12.0x60 (1)	9	CNA*	12,0	12,2	12,5	12,5	11,3	11,8	12,4	12,5
GLE380/2.5X	2	SSH12.0x60 (1)	11	CNA*	12,5	12,5	12,5	12,5	12,4	12,5	12,5	12,5
GLE440/2.5X	4	SSH12.0x60 (1)	12	CNA*	19,6	20,7	22,2	22,5	19,6	20,6	22,1	22,5
GLE500/2.5X	4	SSH12.0x60 (1)	15	CNA*	22,6	23,2	23,6	23,6	22,7	23,3	23,6	23,6
GLE540/2.5X	4	SSH12.0x60 (1)	17	CNA*	23,9	24,0	24,0	24,0	23,9	24,0	24,0	24,0
GLE600/2.5X	4	SSH12.0x60 (1)	20	CNA*	24,3	24,3	24,3	24,3	24,3	24,3	24,3	24,3
GLE660/2.5X	6	SSH12.0x60 (1)	23	CNA*	35,5	36,0	36,0	36,0	35,6	36,0	36,0	36,0
GLE720/2.5X	6	SSH12.0x60 (1)	26	CNA*	36,3	36,3	36,3	36,3	36,3	36,3	36,3	36,3
GLE780/2.5X	6	SSH12.0x60 (1)	29	CNA*	36,6	36,6	36,6	36,6	36,6	36,6	36,6	36,6
GLE840/2.5X	6	SSH12.0x60 (1)	32	CNA*	36,7	36,7	36,7	36,7	36,7	36,7	36,7	36,7
GLE900/2.5X	6	SSH12.0x60 (1)	35	CNA*	36,9	36,9	36,9	36,9	36,9	36,9	36,9	36,9
GLE960/2.5X	8	SSH12.0x60 (1)	38	CNA*	49,0	49,0	49,0	49,0	49,0	49,0	49,0	49,0
GLE1020/2.5X	8	SSH12.0x60 (1)	41	CNA*	49,2	49,2	49,2	49,2	49,2	49,2	49,2	49,2

⁽¹⁾ SSH can be replaced by SSF

		Pr	oduct o	capacities	- Timber	to Timb	er - Larç	je conne	ector scr	/ew		
		Fastene	rs			Ch	haracteris	stic capa	acities -	Timber	C24	
Blank		Header	J	Joist		R'	3.k			R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GLE300/2.5X	2	SSH12.0x60 (1)	7	CNA*	2,2	2,5	3,2	3,9	5,0	5,0	5,0	5,0
GLE340/2.5X	2	SSH12.0x60 (1)	9	CNA*	1,8	2,1	2,7	3,3	5,0	5,0	5,0	5,0
GLE380/2.5X	2	SSH12.0x60 (1)	11	CNA*	1,5	1,8	2,2	2,8	5,0	5,0	5,0	5,0
GLE440/2.5X	4	SSH12.0x60 (1)	12	CNA*	3,8	4,0	4,6	5,2	10,0	10,0	10,0	10,0
GLE500/2.5X	4	SSH12.0x60 (1)	15	CNA*	3,5	3,7	4,1	4,6	10,0	10,0	10,0	10,0
GLE540/2.5X	4	SSH12.0x60 (1)	17	CNA*	3,7	3,9	4,2	4,6	10,0	10,0	10,0	10,0
GLE600/2.5X	4	SSH12.0x60 (1)	20	CNA*	3,6	3,7	4,0	4,3	10,0	10,0	10,0	10,0
GLE660/2.5X	6	SSH12.0x60 (1)	23	CNA*	4,8	5,0	5,3	5,7	15,0	15,0	15,0	15,0
GLE720/2.5X	6	SSH12.0x60 (1)	26	CNA*	4,7	4,8	5,1	5,4	15,0	15,0	15,0	15,0
GLE780/2.5X	6	SSH12.0x60 (1)	29	CNA*	5,2	5,4	5,7	6,0	15,0	15,0	15,0	15,0
GLE840/2.5X	6	SSH12.0x60 (1)	32	CNA*	5,1	5,2	5,4	5,7	15,0	15,0	15,0	15,0
GLE900/2.5X	6	SSH12.0x60 (1)	35	CNA*	5,4	5,8	6,0	6,2	15,0	15,0	15,0	15,0
GLE960/2.5X	8	SSH12.0x60 (1)	38	CNA*	5,4	6,4	6,6	6,8	20,0	20,0	20,0	20,0
GLE1020/2.5X	8	SSH12.0x60 (1)	41	CNA*	5,5	6,9	7,2	7,5	20,0	20,0	20,0	20,0

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber which is not included in these capacities.

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

Characteristic capacities for GLE/4X - with connector screw SSH/SSF

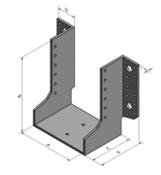
		Pr	oduct	capacities	- Timber	to Timb	er - Lar	ge conn	ector sc	rew		
		Fastene	rs			Ch	aracteri	stic cap	acities -	Timber	C24	
Blank		Header		Joist		R1	l.k			R	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GLE300/4X	2	SSH12.0x60 (1)	7	CNA*	9,3	9,4	9,7	9,8	8,9	9,0	9,5	9,7
GLE340/4X	2	SSH12.0x60 (1)	9	CNA*	9,9	10,0	10,1	10,1	9,7	9,9	10,1	10,1
GLE380/4X	2	SSH12.0x60 (1)	11	CNA*	10,1	10,1	10,1	10,1	10,1	10,1	10,1	10,1
GLE440/4X	4	SSH12.0x60 (1)	12	CNA*	17,2	17,8	18,4	18,5	17,2	17,7	18,4	18,5
GLE500/4X	4	SSH12.0x60 (1)	15	CNA*	18,9	19,0	19,0	19,0	18,9	19,0	19,0	19,0
GLE540/4X	4	SSH12.0x60 (1)	17	CNA*	19,4	19,4	19,4	19,4	19,4	19,4	19,4	19,4
GLE600/4X	4	SSH12.0x60 (1)	20	CNA*	19,6	19,6	19,6	19,6	19,6	19,6	19,6	19,6
GLE660/4X	6	SSH12.0x60 (1)	23	CNA*	29,0	29,0	29,0	29,0	29,0	29,0	29,0	29,0
GLE720/4X	6	SSH12.0x60 (1)	26	CNA*	29,2	29,2	29,2	29,2	29,2	29,2	29,2	29,2
GLE780/4X	6	SSH12.0x60 (1)	29	CNA*	29,5	29,5	29,5	29,5	29,5	29,5	29,5	29,5
GLE840/4X	6	SSH12.0x60 (1)	32	CNA*	29,6	29,6	29,6	29,6	29,6	29,6	29,6	29,6
GLE900/4X	6	SSH12.0x60 (1)	35	CNA*	29,7	29,7	29,7	29,7	29,7	29,7	29,7	29,7
GLE960/4X	8	SSH12.0x60 (1)	38	CNA*	39,5	39,5	39,5	39,5	39,5	39,5	39,5	39,5
GLE1020/4X	8	SSH12.0x60 (1)	41	CNA*	39,7	39,7	39,7	39,7	39,7	39,7	39,7	39,7

⁽¹⁾ SSH can be replaced by SSF

		Pr	oduct	capacities	- Timber	to Timb	oer - Larg	je conne	ector sci	rew		
		Fastene	rs			Ch	aracteris	stic capa	acities -	Timber (C24	
Blank		Header	J	Joist		R:	3.k			R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GLE300/4X	2	SSH12.0x60 (1)	7	CNA*	1,6	1,8	2,3	2,8	5,0	5,0	5,0	5,0
GLE340/4X	2	SSH12.0x60 (1)	9	CNA*	1,3	1,5	2,0	2,4	5,0	5,0	5,0	5,0
GLE380/4X	2	SSH12.0x60 (1)	11	CNA*	1,1	1,3	1,7	2,0	5,0	5,0	5,0	5,0
GLE440/4X	4	SSH12.0x60 (1)	12	CNA*	2,9	3,1	3,5	4,0	10,0	10,0	10,0	10,0
GLE500/4X	4	SSH12.0x60 (1)	15	CNA*	2,7	2,8	3,2	3,5	10,0	10,0	10,0	10,0
GLE540/4X	4	SSH12.0x60 (1)	17	CNA*	2,9	3,0	3,3	3,6	10,0	10,0	10,0	10,0
GLE600/4X	4	SSH12.0x60 (1)	20	CNA*	2,8	2,9	3,1	3,3	10,0	10,0	10,0	10,0
GLE660/4X	6	SSH12.0x60 (1)	23	CNA*	3,8	3,9	4,2	4,5	15,0	15,0	15,0	15,0
GLE720/4X	6	SSH12.0x60 (1)	26	CNA*	3,7	3,8	4,0	4,2	15,0	15,0	15,0	15,0
GLE780/4X	6	SSH12.0x60 (1)	29	CNA*	4,2	4,3	4,5	4,7	15,0	15,0	15,0	15,0
GLE840/4X	6	SSH12.0x60 (1)	32	CNA*	4,0	4,1	4,3	4,5	15,0	15,0	15,0	15,0
GLE900/4X	6	SSH12.0x60 (1)	35	CNA*	4,5	4,5	4,7	4,9	15,0	15,0	15,0	15,0
GLE960/4X	8	SSH12.0x60 (1)	38	CNA*	5,0	5,0	5,2	5,4	20,0	20,0	20,0	20,0
GLE1020/4X	8	SSH12.0x60 (1)	41	CNA*	5,1	5,6	5,7	5,9	20,0	20,0	20,0	20,0

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber which is not included in these capacities.


GLE fire resistance R30 to EN 13501-2

See GLE Joist hanger

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

D17 GLE-AL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GLE-AL	Steel ref 1 - Steel ref 2	-

Dimensions

		Dimon	oiono Im	m.1					Но	les		
Blank		Dimen	sions [m	mj				Head	der		Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
500/2.5X-AL	161-200	(500-A)/2	90	38.5	95	2.5	18	Ø5	4	Ø14	13	Ø5
540/2.5X-AL	161-240	(540-A)/2	90	38.5	95	2.5	18	Ø5	4	Ø14	13	Ø5
600/2.5X-AL	161-240	(600-A)/2	90	38.5	95	2.5	24	Ø5	4	Ø14	16	Ø5
660/2.5X-AL	161-240	(660-A)/2	90	38.5	95	2.5	28	Ø5	6	Ø14	19	Ø5
720/2.5X-AL	161-240	(720-A)/2	90	38.5	95	2.5	34	Ø5	6	Ø14	22	Ø5
780/2.5X-AL	161-240	(780-A)/2	90	38.5	95	2.5	40	Ø5	6	Ø14	25	Ø5
840/2.5X-AL	161-240	(840-A)/2	90	38.5	95	2.5	46	Ø5	6	Ø14	28	Ø5
900/2.5X-AL	161-240	(900-A)/2	90	38.5	95	2.5	52	Ø5	6	Ø14	31	Ø5
960/2.5X-AL	161-240	(960-A)/2	90	38.5	95	2.5	58	Ø5	6	Ø14	34	Ø5
1020/2.5X-AL	161-240	(1020-A)/2	90	38.5	95	2.5	62	Ø5	8	Ø14	37	Ø5
500/4X-AL	161-200	(500-A)/2	90	40	98	4	18	Ø5	4	Ø14	13	Ø5
540/4X-AL	161-240	(540-A)/2	90	40	98	4	18	Ø5	4	Ø14	13	Ø5
600/4X-AL	161-240	(600-A)/2	90	40	98	4	24	Ø5	4	Ø14	16	Ø5
660/4X-AL	161-240	(660-A)/2	90	40	98	4	28	Ø5	6	Ø14	19	Ø5
720/4X-AL	161-240	(720-A)/2	90	40	98	4	34	Ø5	6	Ø14	22	Ø5
780/4X-AL	161-240	(780-A)/2	90	40	98	4	40	Ø5	6	Ø14	25	Ø5
840/4X-AL	161-240	(840-A)/2	90	40	98	4	46	Ø5	6	Ø14	28	Ø5
900/4X-AL	161-240	(900-A)/2	90	40	98	4	52	Ø5	6	Ø14	31	Ø5
960/4X-AL	161-240	(960-A)/2	90	40	98	4	58	Ø5	6	Ø14	34	Ø5
1020/4X-AL	161-240	(1020-A)/2	90	40	98	4	62	Ø5	8	Ø14	37	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C

$k_{\text{H},1}$ for Joist Hanger GLE-AL and GLI-AL - Full nailing - F1

						F	ull nailin	g						
							Blank	Model						
	30	0AL	34	0AL	380	AL	440	AL	500	0AL	54	0AL	600	0AL
	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ						
	-	-	-	-	-	-	-	-	18	13	18	13	24	16
Α	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,
162	-	-	-	-	-	-	-	-	169	39,2	189	48,2	219	69,
164	-	-	-	-	-	-	-	-	168	38,8	188	47,8	218	68,
166	-	-	-	-	-	-	-	-	167	38,3	187	47,3	217	67,
168	-	-	-	-	-	-	-	-	166	37,9	186	46,9	216	67,
170	-	-	-	-	-	-	-	-	165	37,5	185	46,4	215	66,
172	-	-	-	-	-	-	-	-	164	37,0	184	46,0	214	66,
174	-	-	-	-	-	-	-	-	163	36,6	183	45,5	213	65,
176	-	-	-	-	-	-	-	-	162	36,1	182	45,0	212	65,
178	-	-	-	-	-	-	-	-	161	35,7	181	44,6	211	64,
180	-	-	-	-	-	-	-	-	160	35,3	180	44,1	210	63,
182	-	-	-	-	-	-	-	-	159	34,8	179	43,7	209	63,
184	-	-	-	-	-	-	-	-	158	34,4	178	43,2	208	62
186	-	-	-	-	-	-	-	-	157	34,0	177	42,8	207	62
188	-	-	-	-	-	-	-	-	156	33,6	176	42,3	206	61
190	-	-	-	-	-	-	-	-	155	33,1	175	41,9	205	61
192	-	-	-	-	-	-	-	-	154	32,7	174	41,4	204	60
194	-	-	-	-	-	-	-	-	153	32,3	173	41,0	203	59
196	-	-	-	-	-	-	-	-	152	31,8	172	40,6	202	59
198	-	-	-	-	-	-	-	-	151	31,4	171	40,1	201	58
200	-	-	-	-	-	-	-	-	150	31,0	170	39,7	200	58
202	-	-	-	-	-	-	-	-	-	-	169	39,2	199	57
204	-	-	-	-	-	-	-	-	-	-	168	38,8	198	57
206	-	-	-	-	-	-	-	-	-	-	167	38,3	197	56
208	-	-	-	-	-	-	-	-	-	-	166	37,9	196	56
210	-	-	-	-	-	-	-	-	-	-	165	37,5	195	55
212	-	-	-	-	-	-	-	-	-	-	164	37,0	194	54
214	-	-	-	-	-	-	-	-	-	-	163	36,6	193	54
216	-	-	-	-	-	-	-	-	-	-	162	36,1	192	53
218	-	-	-	-	-	-	-	-	-	-	161	35,7	191	53
220	-	-	-	-	-	-	-	-	-	-	160	35,3	190	52
222	-	-	-	-	-	-	-	-	-	-	159	34,8	189	52
224	-	-	-	-	-	-	-	-	-	-	158	34,4	188	51
226	-	-	-	-	-	-	-		-	-	157	34,0	187	51
228	-	-	-	-	-	-	-	-	-	-	156	33,6	186	50
230	-	-	-	-	-	-	-	-	-	-	155	33,1	185	49
232	-	-	-	-	-	-	-	-	-	-	154	32,7	184	49
234	-	-	-	-	-	-	-	-	-	-	153	32,3	183	48
236	-	-	-	-	-	-	-	-	-	-	152	31,8	182	48
238	-	-	-	-	-	-	-	-	-	-	151	31,4	181	47
240	-	-	-	-	-	-	-		-	-	150	31,0	180	47

$k_{\text{H},1}$ for Joist Hanger GLE-AL and GLI-AL - Full nailing - F1

						F	ull nailin	g						
								Model						
	66	0AL	72	0AL	780	0AL		0AL	90	0AL	96	0AL	102	0AL
	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ
	28	19	34	22	40	25	46	28	52	31	58	34	62	37
Width	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1
162	249	87,8	279	112,7	309	139,8	339	171,8	369	204,8	399	244,1	429	274,4
164	248	87,2	278	112,0	308	138,9	338	170,8	368	203,7	398	242,9	428	273,2
166	247	86,5	277	111,2	307	138,0	337	169,8	367	202,6	397	241,7	427	271,9
168 170	246 245	85,9 85.3	276 275	110,4 109,7	306 305	137,1 136,2	336 335	168,8 167,8	366 365	201,5 200,4	396 395	240,5 239.3	426 425	270,6 269,3
170	245	85,3 84,6	275	109,7	305	135,4	335	166,8	364	199,3	395	239,3	425	269,3
174	243	84,0	273	108,9	303	134,5	333	165.8	363	199,3	393	236,9	423	266.8
176	242	83,4	272	107,4	302	133,6	332	164,8	362	197,1	392	235,7	422	265,5
178	241	82,7	271	106,6	301	132,7	331	163,9	361	196,0	391	234,5	421	264,3
180	240	82,1	270	105,9	300	131,9	330	162,9	360	194,9	390	233,3	420	263,0
182	239	81,5	269	105,1	299	131,0	329	161,9	359	193,8	389	232,1	419	261,8
184	238	80,8	268	104,3	298	130,1	328	160,9	358	192,8	388	230,9	418	260,5
186	237	80,2	267	103,6	297	129,3	327	159,9	357	191,7	387	229,7	417	259,2
188	236	79,6	266	102,8	296	128,4	326	159,0	356	190,6	386	228,5	416	258,0
190	235	79,0	265	102,1	295	127,5	325	158,0	355	189,5	385	227,3	415	256,7
192	234	78,3	264	101,3	294	126,7	324	157,0	354	188,4	384	226,1	414	255,5
194	233	77,7	263	100,6	293	125,8	323	156,1	353	187,4	383	224,9	413	254,2
196	232	77,1	262	99,8	292	124,9 124,1	322	155,1	352	186,3	382	223,7 222.6	412	253,0
198 200	231	76,5 75,9	261 260	99,1	291 290	124,1	321	154,1 153,2	351 350	185,2	381 380	222,6	411 410	251,7 250,5
200	230 229	75,9 75,2	259	98,3 97,6	289	123,2	320 319	153,2	349	184,1 183,1	379	220,2	409	250,5
204	228	74,6	258	96,8	288	121,5	318	151,2	348	182,0	378	219,0	408	249,3
206	227	74,0	257	96,1	287	120,7	317	150,3	347	180,9	377	217,9	407	246,8
208	226	73,4	256	95,4	286	119,8	316	149,3	346	179,9	376	216,7	406	245,6
210	225	72,8	255	94,6	285	119,0	315	148,4	345	178,8	375	215,5	405	244,3
212	224	72,2	254	93,9	284	118,1	314	147,4	344	177,8	374	214,3	404	243,1
214	223	71,6	253	93,1	283	117,3	313	146,5	343	176,7	373	213,2	403	241,9
216	222	71,0	252	92,4	282	116,5	312	145,5	342	175,7	372	212,0	402	240,6
218	221	70,4	251	91,7	281	115,6	311	144,6	341	174,6	371	210,9	401	239,4
220	220	69,8	250	91,0	280	114,8	310	143,6	340	173,6	370	209,7	400	238,2
222	219	69,2	249	90,2	279	113,9	309	142,7	339	172,5	369	208,5	399	237,0
224	218	68,6	248	89,5	278	113,1	308	141,7	338	171,5	368	207,4	398	235,8
226	217	68,0	247	88,8	277	112,3	307	140,8	337	170,4	367	206,2	397	234,6
228	216 215	67,4 66,8	246 245	88,1 87,3	276 275	111,5 110,6	306 305	139,9 138,9	336 335	169,4 168,3	366 365	205,1 203,9	396 395	233,3 232,1
230	215	66,8	245	87,3 86,6	275	110,6	305	138,9	335	168,3	365	203,9	395	232,1
232	213	65,6	244	85,9	273	109,8	304	138,0	334	166,3	363	202,8	394	230,9
236	212	65,0	243	85,2	272	108,2	302	136,1	332	165,2	362	200,5	392	228,5
238	211	64,4	241	84,5	271	107,3	301	135,2	331	164,2	361	199,4	391	227,3
240	210	63,8	240	83,8	270	106,5	300	134,3	330	163,2	360	198,2	390	226,1

$k_{\text{H,1}}$ for Joist Hanger GLE-AL and GLI-AL - Partial nailing - F1

						Pa	ırtial naili	ing						
							Blank	Model						
	30	0AL	34	0AL	380	DAL	44	0AL	50	0AL	54	0AL	600)AL
	n _H	n _J	n _H	n _J	n _H	n _J	n _H	n _J	n _H	n _J	n _H	n _J	n _H	n _J
L		-	-	-	-	-	-	-	8	7	8	7	10	8
Width	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1	В	kh,1
162	-	-	-	-	-	-	-	-	169	19,8	189	24,2	219	33,4
164	-	-	-	-	-	-	-	-	168	19,6	188	24,0	218	33,1
166	-	-	-	-	-	-	-	-	167	19,4	187	23,7	217	32,9
168	-	-	-	-	-	-	-	-	166	19,2	186	23,5	216	32,6
170	-	-	-	-	-	-	-	-	165	19,0	185	23,3	215	32,3
172		-	-	-	-	-	-	-	164	18,7	184	23,1	214	32,1
174	-	-	-	-	-	-	-	-	163	18,5	183	22,9	213	31,8
176	-	-	-	-	-	-	-	-	162	18,3	182	22,6	212	31,5
178	-	-	-	-	-	-	-	-	161	18,1 17,9	181 180	22,4	211 210	31,3
180	-	-	-	-	-	-	-	-	160 159	17,9	180 179	22,2 22,0	210	31,0 30,7
182 184	-	-	-	-	-	-	-	-	159 158	17,7	179 178	22,0	209	30,7
184	-		-		-	-	-	-	158	17,5	178	21,8	208	30,5
188	-	-				-	-	-	156	17,3	176	21,3	207	29,9
190	-	-	-		-	-	-	-	155	16,9	175	21,3	205	29,9
190	-	-	- : -			-	- : -	-	154	16,6	173	20,9	203	29,4
194		-	-	-	-	-	-	-	153	16,4	173	20,9	203	29,4
196		-	-	-	-	-	-	-	152	16,2	172	20,7	202	28,9
198	-	-	-	-	-	-	-	-	151	16,0	171	20,2	201	28,6
200		-	-	-	-	-	-	-	150	15,8	170	20,0	200	28,4
202		-	-	_	-	-	-	-	-	-	169	19,8	199	28,1
204	-	-	-	-	-	-	-	-	-	-	168	19,6	198	27,8
206	-	-	-	-	-	-	-	-	-	-	167	19,4	197	27,6
208	-	-	-	-	-	-	-	-	-	-	166	19,2	196	27,3
210	-	-	-	-	-	-	-	-	-	-	165	19,0	195	27,1
212		-	-	-	-	-	-	-	-	-	164	18,7	194	26,8
214		-	-	-	-	-	-	-	-	-	163	18,5	193	26,5
216		-	-	-	-	-	-	-	-	-	162	18,3	192	26,3
218		-	-	-	-	-	-	-	-	-	161	18,1	191	26,0
220	-	-	-	-	-	-	-	-	-	-	160	17,9	190	25,8
222	-	-	-	-	-	-	-	-	-	-	159	17,7	189	25,5
224		-	-	-	-	-	-	-	-	-	158	17,5	188	25,3
226		-	-	-	-	-	-	-	-	-	157	17,3	187	25,0
228	-	-	-	-	-	-	-	-	-	-	156	17,1	186	24,7
230		-	-	-	-	-	-	-	-	-	155	16,9	185	24,5
232	-	-	-	-	-	-	-	-	-	-	154	16,6	184	24,2
234		-	-	-	-	-	-	-	-	-	153	16,4	183	24,0
236		-	-	-	-	-	-	-	-	-	152	16,2	182	23,7
238	-	-	-	-	-	-	-	-	-	-	151	16,0	181	23,5
240	-	-	-	-	-	-	-	-	-	-	150	15,8	180	23,2

$k_{\text{H},1}$ for Joist Hanger GLE-AL and GLI-AL - Partial nailing - F1

						Pa	rtial naili	ing						
								Model						
	66	0AL	72	0AL	780	DAL	84	DAL	90	0AL	96	0AL	102	0AL
	n _H	nJ	n _H	nJ										
	12	10	14	12	18	13	20	14	24	16	26	18	28	19
Width	В	kh,1	В	kh,1										
162	249	39,9	279	51,8	309	81,6	339	81,3	369	99,1	399	117,2	429	129,2
164	248	39,6	278	51,5	308	81,2	338	80,9	368	98,6	398	116,6	428	128,6
166	247	39,3	277	51,1	307	80,7	337	80,4	367	98,1	397	116,1	427	128,0
168 170	246 245	39,0 38,7	276 275	50,8 50,4	306 305	80,3 79,8	336 335	79,9 79,5	366 365	97,5 97,0	396 395	115,5 114,9	426 425	127,4 126,8
172	245	38,4	274	50,4	304	79,6	334	79,5	364	96,5	395	114,9	425	126,8
174	243	38,1	273	49,8	303	79,0	333	78,6	363	95,9	393	113,8	423	125,7
176	242	37,8	272	49,4	302	78,5	332	78,1	362	95,4	392	113,2	422	125,1
178	241	37,5	271	49,1	301	78,1	331	77,6	361	94,9	391	112,6	421	124,5
180	240	37,2	270	48,7	300	77,6	330	77,2	360	94,4	390	112,1	420	123,9
182	239	36,9	269	48,4	299	77,2	329	76,7	359	93,8	389	111,5	419	123,3
184	238	36,7	268	48,1	298	76,8	328	76,3	358	93,3	388	110,9	418	122,7
186	237	36,4	267	47,7	297	76,3	327	75,8	357	92,8	387	110,4	417	122,1
188	236	36,1	266	47,4	296	75,9	326	75,4	356	92,3	386	109,8	416	121,5
190	235	35,8	265	47,1	295	75,5	325	74,9	355	91,8	385	109,2	415	120,9
192	234	35,5	264	46,7	294	75,0	324	74,5	354	91,2	384	108,7	414	120,4
194	233	35,2	263	46,4	293	74,6	323	74,0	353	90,7	383	108,1	413	119,8
196 198	232 231	34,9 34,6	262 261	46,1 45,7	292 291	74,2 73,7	322 321	73,6 73,1	352 351	90,2	382 381	107,5 107,0	412	119,2
200	231	34,6	260	45,7	291	73,7	320	73,1	351	89,7 89,2	381	107,0	411 410	118,6 118,0
200	229	34,0	259	45,4	289	73,3	319	72,7	349	88,7	379	105,4	409	117.4
204	228	33,8	258	44,7	288	72,4	318	71,8	348	88,1	378	105,3	408	116,9
206	227	33,5	257	44,4	287	72,0	317	71,3	347	87,6	377	104,7	407	116,3
208	226	33,2	256	44,1	286	71,6	316	70,9	346	87,1	376	104,2	406	115,7
210	225	32,9	255	43,7	285	71,1	315	70,4	345	86,6	375	103,6	405	115,1
212	224	32,6	254	43,4	284	70,7	314	70,0	344	86,1	374	103,1	404	114,6
214	223	32,3	253	43,1	283	70,3	313	69,5	343	85,6	373	102,5	403	114,0
216	222	32,1	252	42,8	282	69,8	312	69,1	342	85,1	372	102,0	402	113,4
218	221	31,8	251	42,4	281	69,4	311	68,6	341	84,6	371	101,4	401	112,8
220	220	31,5	250	42,1	280	69,0	310	68,2	340	84,1	370	100,9	400	112,3
222	219	31,2	249	41,8	279	68,6	309	67,8	339	83,6	369	100,3	399	111,7
224	218	30,9	248	41,4	278	68,1	308	67,3	338	83,1	368	99,8	398	111,1
226	217	30,7	247	41,1	277	67,7	307	66,9	337	82,6	367	99,2	397	110,6
228	216 215	30,4 30,1	246 245	40,8 40,5	276 275	67,3 66,9	306 305	66,4 66,0	336 335	82,0 81,5	366 365	98,7 98,1	396 395	110,0 109,4
232	215	29,8	245	40,5	275	66,4	305	65,6	335	81,5	364	98,1	395	109,4
234	213	29,6	243	39,8	273	66,0	303	65,1	333	80,6	363	97,6	393	108,3
236	212	29,3	242	39,5	272	65,6	302	64,7	332	80,1	362	96,5	392	107,7
238	211	29,0	241	39,2	271	65,2	301	64,3	331	79,6	361	95,9	391	107,2
240	210	28,7	240	38,9	270	64,7	300	63,8	330	79,1	360	95,4	390	106,6

$k_{\text{H,2}}$ for GLE-AL and GLI-AL - Full or partial nailing - F2

Blank	Total numb		k	H2
	Full nailing	Partial nailing	Full nailing	Partial nailing
500AL	18	8	19,1	8,8
540AL	18	8	19,1	8,8
600AL	24	10	30,4	12,5
660AL	28	12	42,2	18,8
720AL	34	14	57,5	23,4
780AL	40	18	76,9	35,4
840AL	46	20	98,4	42,8
900AL	52	24	122,8	58,2
960AL	58	26	150,1	66,2
1020AL	62	28	173,5	80,4

Page 123 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Characteristic capacities for GLE/2.5X-AL - with connector screw SSH/SSF

			Pro	duct cap	oacities -	Γimber to	Timber - L	arge con	nector sci	ew		
		Fastener	'S				Characte	ristic capa	acities - Ti	mber C24		
Blank		Header	J	oist		R	1.k			R	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GLE500-AL/2.5X	4	SSH12.0x60 ⁽¹⁾	13	CNA*	20,6	21,5	22,7	22,9	20,8	21,6	22,7	22,9
GLE540-AL/2.5X	4	SSH12.0x60 ⁽¹⁾	13	CNA*	20,6	21,5	22,7	22,9	20,8	21,6	22,7	22,9
GLE600-AL/2.5X	4	SSH12.0x60 ⁽¹⁾	16	CNA*	23,2	23,6	23,6	23,6	23,3	23,6	23,6	23,6
GLE660-AL/2.5X	6	SSH12.0x60 ⁽¹⁾	19	CNA*	31,4	33,3	35,1	35,1	31,5	33,6	35,1	35,1
GLE720-AL/2.5X	6	SSH12.0x60 ⁽¹⁾	22	CNA*	34,7	35,6	35,7	35,7	34,9	35,6	35,7	35,7
GLE780-AL/2.5X	6	SSH12.0x60 ⁽¹⁾	25	CNA*	36,3	36,3	36,3	36,3	36,3	36,3	36,3	36,3
GLE840-AL/2.5X	6	SSH12.0x60 ⁽¹⁾	28	CNA*	36,4	36,4	36,4	36,4	36,4	36,4	36,4	36,4
GLE900-AL/2.5X	6	SSH12.0x60 ⁽¹⁾	31	CNA*	36,7	36,7	36,7	36,7	36,7	36,7	36,7	36,7
GLE960-AL/2.5X	6	SSH12.0x60 ⁽¹⁾	34	CNA*	36,8	36,8	36,8	36,8	36,8	36,8	36,8	36,8
GLE1020-AL/2.5X	8	SSH12.0x60 ⁽¹⁾	37	CNA*	49,0	49,0	49,0	49,0	49,0	49,0	49,0	49,0

(1)SSH can be replaced by SSF

		Product capacities - Timber to Timber - Large connector screw												
		Fastene	rs				Characte	ristic capa	cities - Ti	mber C24				
Blank		Header	·	Joist		R	3.k			R	4.k			
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60		
GLE500-AL/2.5X	4	SSH12.0x60 ⁽¹⁾	13	CNA*	7,4	8,9	10,6	10,6	10,0	10,0	10,0	10,0		
GLE540-AL/2.5X	4	SSH12.0x60 ⁽¹⁾	13	CNA*	7,4	8,9	9,7	9,7	10,0	10,0	10,0	10,0		
GLE600-AL/2.5X	4	SSH12.0x60 ⁽¹⁾	16	CNA*	8,2	8,2	8,2	8,2	10,0	10,0	10,0	10,0		
GLE660-AL/2.5X	6	SSH12.0x60 ⁽¹⁾	19	CNA*	10,4	10,8	10,8	10,8	15,0	15,0	15,0	15,0		
GLE720-AL/2.5X	6	SSH12.0x60 ⁽¹⁾	22	CNA*	9,5	9,5	9,5	9,5	15,0	15,0	15,0	15,0		
GLE780-AL/2.5X	6	SSH12.0x60 ⁽¹⁾	25	CNA*	9,3	9,3	9,3	9,3	15,0	15,0	15,0	15,0		
GLE840-AL/2.5X	6	SSH12.0x60 ⁽¹⁾	28	CNA*	8,4	8,4	8,4	8,4	15,0	15,0	15,0	15,0		
GLE900-AL/2.5X	6	SSH12.0x60 ⁽¹⁾	31	CNA*	8,5	8,5	8,5	8,5	15,0	15,0	15,0	15,0		
GLE960-AL/2.5X	6	SSH12.0x60 ⁽¹⁾	34	CNA*	8,0	8,0	8,0	8,0	15,0	15,0	15,0	15,0		
GLE1020-AL/2.5X	8	SSH12.0x60 ⁽¹⁾	37	CNA*	9,8	9,8	9,8	9,8	20,0	20,0	20,0	20,0		

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber which is not included in these capacities.

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

Page 124 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Characteristic capacities for GLE/4X-AL - with connector screw SSH/SSF

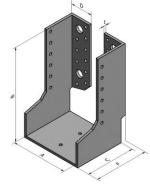
			Pro	oduct cap	oacities -	Timber to	Timber - I	_arge con	nector sci	ew		
		Fastener	'S				Characte	ristic capa	acities - Ti	mber C24		
Blank		Header	J	oist		R	1.k			R	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GLE500-AL/4X	4	SSH12.0x60 ⁽¹⁾	13	CNA*	17,7	18,2	18,5	18,5	17,8	18,2	18,5	18,5
GLE540-AL/4X	4	SSH12.0x60 ⁽¹⁾	13	CNA*	17,7	18,2	18,5	18,5	17,8	18,2	18,5	18,5
GLE600-AL/4X	4	SSH12.0x60 ⁽¹⁾	16	CNA*	19,0	19,0	19,0	19,0	19,0	19,0	19,0	19,0
GLE660-AL/4X	6	SSH12.0x60 ⁽¹⁾	19	CNA*	27,5	28,1	28,3	28,3	27,6	28,2	28,3	28,3
GLE720-AL/4X	6	SSH12.0x60 ⁽¹⁾	22	CNA*	28,8	28,8	28,8	28,8	28,8	28,8	28,8	28,8
GLE780-AL/4X	6	SSH12.0x60 ⁽¹⁾	25	CNA*	29,2	29,2	29,2	29,2	29,2	29,2	29,2	29,2
GLE840-AL/4X	6	SSH12.0x60 ⁽¹⁾	28	CNA*	29,4	29,4	29,4	29,4	29,4	29,4	29,4	29,4
GLE900-AL/4X	6	SSH12.0x60 ⁽¹⁾	31	CNA*	29,6	29,6	29,6	29,6	29,6	29,6	29,6	29,6
GLE960-AL/4X	6	SSH12.0x60 ⁽¹⁾	34	CNA*	29,7	29,7	29,7	29,7	29,7	29,7	29,7	29,7
GLE1020-AL/4X	8	SSH12.0x60 ⁽¹⁾	37	CNA*	39,5	39,5	39,5	39,5	39,5	39,5	39,5	39,5

⁽¹⁾SSH can be replaced by SSF

		Product capacities - Timber to Timber - Large connector screw												
		Fastene	rs				Characte	ristic capa	cities - Ti	mber C24				
Blank		Header	·	loist		R	3.k			R	4.k			
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60		
GLE500-AL/4X	4	SSH12.0x60 ⁽¹⁾	13	CNA*	7,3	8,2	8,2	8,2	10,0	10,0	10,0	10,0		
GLE540-AL/4X	4	SSH12.0x60 ⁽¹⁾	13	CNA*	7,3	7,5	7,5	7,5	10,0	10,0	10,0	10,0		
GLE600-AL/4X	4	SSH12.0x60 ⁽¹⁾	16	CNA*	6,3	6,3	6,3	6,3	10,0	10,0	10,0	10,0		
GLE660-AL/4X	6	SSH12.0x60 ⁽¹⁾	19	CNA*	8,4	8,4	8,4	8,4	15,0	15,0	15,0	15,0		
GLE720-AL/4X	6	SSH12.0x60 ⁽¹⁾	22	CNA*	7,4	7,4	7,4	7,4	15,0	15,0	15,0	15,0		
GLE780-AL/4X	6	SSH12.0x60 ⁽¹⁾	25	CNA*	7,3	7,3	7,3	7,3	15,0	15,0	15,0	15,0		
GLE840-AL/4X	6	SSH12.0x60 ⁽¹⁾	28	CNA*	6,6	6,6	6,6	6,6	15,0	15,0	15,0	15,0		
GLE900-AL/4X	6	SSH12.0x60 ⁽¹⁾	31	CNA*	6,7	6,7	6,7	6,7	15,0	15,0	15,0	15,0		
GLE960-AL/4X	6	SSH12.0x60 ⁽¹⁾	34	CNA*	6,3	6,3	6,3	6,3	15,0	15,0	15,0	15,0		
GLE1020-AL/4X	8	SSH12.0x60 ⁽¹⁾	37	CNA*	7,8	7,8	7,8	7,8	20,0	20,0	20,0	20,0		

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber which is not included in these capacities.


GLE-AL fire resistance R30 to EN 13501-2

See GLE Joist hanger

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

D18 GLI Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GLI	Steel ref 1 - Steel ref 2	-

Dimensions

									H	loles		
Blank		Dime	nsions	[mm]				Hea	ıder		Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
300/2.5X	76-110	(300-A)/2	90	38.5	95	2.5	12	Ø5	2	Ø14	7	Ø5
340/2.5X	76-110	(340-A)/2	90	38.5	95	2.5	16	Ø5	2	Ø14	9	Ø5
380/2.5X	76-110	(380-A)/2	90	38.5	95	2.5	20	Ø5	2	Ø14	11	Ø5
440/2.5X	76-160	(440-A)/2	90	38.5	95	2.5	20	Ø5	4	Ø14	12	Ø5
500/2.5X	76-160	(500-A)/2	90	38.5	95	2.5	26	Ø5	4	Ø14	15	Ø5
540/2.5X	76-160	(540-A)/2	90	38.5	95	2.5	30	Ø5	4	Ø14	17	Ø5
600/2.5X	76-160	(600-A)/2	90	38.5	95	2.5	36	Ø5	4	Ø14	20	Ø5
660/2.5X	76-160	(660-A)/2	90	38.5	95	2.5	40	Ø5	6	Ø14	23	Ø5
720/2.5X	76-160	(720-A)/2	90	38.5	95	2.5	46	Ø5	6	Ø14	26	Ø5
780/2.5X	76-160	(780-A)/2	90	38.5	95	2.5	48	Ø5	6	Ø14	29	Ø5
840/2.5X	76-160	(840-A)/2	90	38.5	95	2.5	54	Ø5	6	Ø14	32	Ø5
900/2.5X	76-160	(900-A)/2	90	38.5	95	2.5	60	Ø5	6	Ø14	35	Ø5
960/2.5X	76-160	(960-A)/2	90	38.5	95	2.5	64	Ø5	8	Ø14	38	Ø5
1020/2.5X	76-160	(1020-A)/2	90	38.5	95	2.5	70	Ø5	8	Ø14	41	Ø5
300/4X	76-110	(300-A)/2	90	40	98	4	12	Ø5	2	Ø14	7	Ø5
340/4X	76-110	(340-A)/2	90	40	98	4	16	Ø5	2	Ø14	9	Ø5
380/4X	76-110	(380-A)/2	90	40	98	4	20	Ø5	2	Ø14	11	Ø5
440/4X	76-160	(440-A)/2	90	40	98	4	20	Ø5	4	Ø14	12	Ø5
500/4X	76-160	(500-A)/2	90	40	98	4	26	Ø5	4	Ø14	15	Ø5
540/4X	76-160	(540-A)/2	90	40	98	4	30	Ø5	4	Ø14	17	Ø5
600/4X	76-160	(600-A)/2	90	40	98	4	36	Ø5	4	Ø14	20	Ø5
660/4X	76-160	(660-A)/2	90	40	98	4	40	Ø5	6	Ø14	23	Ø5
720/4X	76-160	(720-A)/2	90	40	98	4	46	Ø5	6	Ø14	26	Ø5
780/4X	76-160	(780-A)/2	90	40	98	4	48	Ø5	6	Ø14	29	Ø5
840/4X	76-160	(840-A)/2	90	40	98	4	54	Ø5	6	Ø14	32	Ø5
900/4X	76-160	(900-A)/2	90	40	98	4	60	Ø5	6	Ø14	35	Ø5
960/4X	76-160	(960-A)/2	90	40	98	4	64	Ø5	8	Ø14	38	Ø5
1020/4X	76-160	(1020-A)/2	90	40	98	4	70	Ø5	8	Ø14	41	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Page 126 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07 Parameters have to be used with equation in $\underline{\mathsf{Annex}\ \mathsf{C}}$.

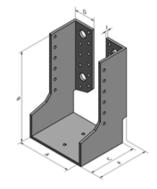
 $k_{\text{H},1}$ for Joist Hanger GLI - Full nailing - F1

See GLE Joist hanger

 $k_{\text{H,1}}$ for Joist Hanger GLI - Partial nailing - F1

See GLE Joist hanger

 $k_{\text{H},2}$ for GLI - Full or partial nailing - F2


See GLE Joist hanger

GLI fire resistance R30 to EN 13501-2

See GLE Joist hanger

D19 GLI-AL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GLI-AL	Steel ref 1 - Steel ref 2	-

Dimensions

		Diman	-!	[]					ı	Holes		
Blank		Dimen	sions	[mm]				Hea	ader		Joi	st
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
500/2.5X-AL	161-200	(500-A)/2	90	38.5	95	2.5	18	Ø5	4	Ø14	13	Ø5
540/2.5X-AL	161-240	(540-A)/2	90	38.5	95	2.5	18	Ø5	4	Ø14	13	Ø5
600/2.5X-AL	161-240	(600-A)/2	90	38.5	95	2.5	24	Ø5	4	Ø14	16	Ø5
660/2.5X-AL	161-240	(660-A)/2	90	38.5	95	2.5	28	Ø5	6	Ø14	19	Ø5
720/2.5X-AL	161-240	(720-A)/2	90	38.5	95	2.5	34	Ø5	6	Ø14	22	Ø5
780/2.5X-AL	161-240	(780-A)/2	90	38.5	95	2.5	40	Ø5	6	Ø14	25	Ø5
840/2.5X-AL	161-240	(840-A)/2	90	38.5	95	2.5	46	Ø5	6	Ø14	28	Ø5
900/2.5X-AL	161-240	(900-A)/2	90	38.5	95	2.5	52	Ø5	6	Ø14	31	Ø5
960/2.5X-AL	161-240	(960-A)/2	90	38.5	95	2.5	58	Ø5	8	Ø14	34	Ø5
1020/2.5X-AL	161-240	(1020-A)/2	90	38.5	95	2.5	62	Ø5	8	Ø14	37	Ø5
500/4X-AL	161-200	(500-A)/2	90	40	98	4	18	Ø5	4	Ø14	13	Ø5
540/4X-AL	161-240	(540-A)/2	90	40	98	4	18	Ø5	4	Ø14	13	Ø5
600/4X-AL	161-240	(600-A)/2	90	40	98	4	24	Ø5	4	Ø14	16	Ø5
660/4X-AL	161-240	(660-A)/2	90	40	98	4	28	Ø5	6	Ø14	19	Ø5
720/4X-AL	161-240	(720-A)/2	90	40	98	4	34	Ø5	6	Ø14	22	Ø5
780/4X-AL	161-240	(780-A)/2	90	40	98	4	40	Ø5	6	Ø14	25	Ø5
840/4X-AL	161-240	(840-A)/2	90	40	98	4	46	Ø5	6	Ø14	28	Ø5
900/4X-AL	161-240	(900-A)/2	90	40	98	4	52	Ø5	6	Ø14	31	Ø5
960/4X-AL	161-240	(960-A)/2	90	40	98	4	58	Ø5	8	Ø14	34	Ø5
1020/4X-AL	161-240	(1020-A)/2	90	40	98	4	62	Ø5	8	Ø14	37	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C.

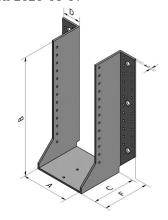
 $k_{H,1}$ for Joist Hanger GLI-AL - Full nailing - F1

See GLE Joist hanger

 $k_{\text{H,1}}$ for Joist Hanger GLI-AL - Partial nailing - F1

See GLE Joist hanger

 $k_{\text{H},2}$ for GLI-AL - Full or partial nailing - F2


See GLE Joist hanger

GLI-AL fire resistance R30 to EN 13501-2

See GLE Joist hanger

D20 GSE Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GSE	Steel ref 1 - Steel ref 2	-

Dimensions

		D '	- · - · - · - ·	-					Н	oles		
Blank		Dimen	sions [mmj				Heade	r		Je	oist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
300/2.5X	32-110	(300-A)/2	110	42.5	115	2.5	12	Ø5	2	Ø13	6	Ø5
340/2.5X	32-110	(340-A)/2	110	42.5	115	2.5	16	Ø5	2	Ø13	8	Ø5
380/2.5X	32-140	(380-A)/2	110	42.5	115	2.5	16	Ø5	4	Ø13	8	Ø5
440/2.5X	32-140	(440-A)/2	110	42.5	115	2.5	22	Ø5	4	Ø13	12	Ø5
500/2.5X	32-140	(500-A)/2	110	42.5	115	2.5	28	Ø5	4	Ø13	14	Ø5
540/2.5X	32-140	(540-A)/2	110	42.5	115	2.5	32	Ø5	4	Ø13	16	Ø5
600/2.5X	32-140	(600-A)/2	110	42.5	115	2.5	38	Ø5	4	Ø13	20	Ø5
660/2.5X	32-140	(660-A)/2	110	42.5	115	2.5	44	Ø5	6	Ø13	22	Ø5
720/2.5X	32-140	(720-A)/2	110	42.5	115	2.5	50	Ø5	6	Ø13	26	Ø5
780/2.5X	32-140	(780-A)/2	110	42.5	115	2.5	56	Ø5	6	Ø13	28	Ø5
840/2.5X	32-140	(840-A)/2	110	42.5	115	2.5	62	Ø5	6	Ø13	32	Ø5
900/2.5X	32-140	(900-A)/2	110	42.5	115	2.5	68	Ø5	6	Ø13	36	Ø5
960/2.5X	32-140	(960-A)/2	110	42.5	115	2.5	74	Ø5	6	Ø13	38	Ø5
1020/2.5X	32-140	(1020-A)/2	110	42.5	115	2.5	80	Ø5	6	Ø13	40	Ø5
300/4X	32-110	(300-A)/2	110	45.5	118	4	12	Ø5	2	Ø13	6	Ø5
340/4X	32-110	(340-A)/2	110	45.5	118	4	16	Ø5	2	Ø13	8	Ø5
380/4X	32-140	(380-A)/2	110	45.5	118	4	16	Ø5	4	Ø13	8	Ø5
440/4X	32-140	(440-A)/2	110	45.5	118	4	22	Ø5	4	Ø13	12	Ø5
500/4X	32-140	(500-A)/2	110	45.5	118	4	28	Ø5	4	Ø13	14	Ø5
540/4X	32-140	(540-A)/2	110	45.5	118	4	32	Ø5	4	Ø13	16	Ø5
600/4X	32-140	(600-A)/2	110	45.5	118	4	38	Ø5	4	Ø13	20	Ø5
660/4X	32-140	(660-A)/2	110	45.5	118	4	44	Ø5	6	Ø13	22	Ø5
720/4X	32-140	(720-A)/2	110	45.5	118	4	50	Ø5	6	Ø13	26	Ø5
780/4X	32-140	(780-A)/2	110	45.5	118	4	56	Ø5	6	Ø13	28	Ø5
840/4X	32-140	(840-A)/2	110	45.5	118	4	62	Ø5	6	Ø13	32	Ø5
900/4X	32-140	(900-A)/2	110	45.5	118	4	68	Ø5	6	Ø13	36	Ø5
960/4X	32-140	(960-A)/2	110	45.5	118	4	74	Ø5	6	Ø13	38	Ø5
1020/4X	32-140	(1020-A)/2	110	45.5	118	4	80	Ø5	6	Ø13	40	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C

 $k_{\text{H,1}}$ for Joist Hanger GSE and GSI - Full nailing - F1

NH,1 I					I	1 631					l _		_		_								_					
	3	00	3	40	3	80	4	40	5	00	5	40	6	00	6	60	7	720	7	80	8	40	9	00	9	960	10	020
	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	пн	nJ
	12	6	16	8	16	8	22	12	28	14	32	16	38	20	44	22	50	26	56	28	62	32	68	38	74	38	80	40
Α	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1
32	134	17.5	154	21.0	174	25.4	204	41.2	234	55.7	254	66.1	284	82.9	314	102.2	344	122.8	374	145.9	404	170.3	434	196.1	464	225.3	494	255.9
34	133	17.3	153	20.8	173	25.2	203	40.8	233	55.3	253	65.6	283	82.3	313	101.6	343	122.1	373	145.1	403	169.4	433	195.2	463	224.4	493	254.9
36	132	17.1	152	20.5	172	24.9	202	40.5	232	54.8	252	65.1	282	81.8	312	101	342	121.4	372	144.3	402	168.6	432	194.4	462	223.4	492	253.9
38	131	16.8	151	20.3	171	24.7	201	40.1	231	54.4	251	64.6	281	81.2	311	100.3	341	120.7	371	143.6	401	167.8	431	193.5	461	222.4	491	252.9
40	130	16.6	150	20.1	170	24.5	200	39.8	230	54.0	250	64.2	280	80.7	310	99.7	340	120	370	142.8	400	167	430	192.6	460	221.5	490	251.8
42	129	16.4	149	19.9	169	24.3	199	39.4	229	53.5	249	63.7	279	80.1	309	99.1	339	119.4	369	142.1	399	166.1	429	191.7	459	220.5	489	250.8
44	128	16.2	148	19.7	168	24.1	198	39.1	228	53.1	248	63.2	278	79.6	308	98.5	338	118.7	368	141.3	398	165.3	428	190.8	458	219.6	488	249.8
46	127	15.9	147	19.4	167	23.8	197	38.7	227	52.7	247	62.7	277	79.0	307	97.9	337	118	367	140.6	397	164.5	427	189.9	457	218.6	487	248.8
48	126	15.7	146	19.2	166	23.6	196	38.3	226	52.2	246	62.2	276	78.5	306	97.2	336	117.3	366	139.8	396	163.7	426	189	456	217.7	486	247.7
50	125	15.5	145	19.0	165	23.4	195	38.0	225	51.8	245	61.7	275	77.9	305	96.6	335	116.6	365	139	395	162.9	425	188.2	455	216.7	485	246.7
52	124	15.3	144	18.8	164	23.2	194	37.6	224	51.4	244	61.3	274	77.4	304	96	334	115.9	364	138.3	394	162	424	187.3	454	215.8	484	245.7
54	123	15.1	143	18.6	163	22.9	193	37.3	223	50.9	243	60.8	273	76.8	303	95.4	333	115.2	363	137.5	393	161.2	423	186.4	453	214.8	483	244.7
56	122	14.8	142	18.4	162	22.7	192	36.9	222	50.5	242	60.3	272	76.3	302	94.8	332	114.6	362	136.8	392	160.4	422	185.5	452	213.9	482	243.7
58	121	14.6	141	18.1	161	22.5	191	36.6	221	50.1	241	59.8	271	75.8	301	94.2	331	113.9	361	136	391	159.6	421	184.6	451	212.9	481	242.7
60	120	14.4	140	17.9	160	22.3	190	36.2	220	49.6	240	59.4	270	75.2	300	93.5	330	113.2	360	135.3	390	158.8	420	183.8	450	212	480	241.7
62	119	14.2	139	17.7	159	22.1	189	35.9	219	49.2	239	58.9	269	74.7	299	92.9	329	112.5	359	134.6	389	158	419	182.9	449	211	479	240.6
64	118	13.9	138	17.5	158	21.8	188	35.5	218	48.8	238	58.4	268	74.1	298	92.3	328	111.9	358	133.8	388	157.2	418	182	448	210.1	478	239.6
66	117	13.7	137	17.3	157	21.6	187	35.2	217	48.4	237	57.9	267	73.6	297	91.7	327	111.2	357	133.1	387	156.4	417	181.1	447	209.1	477	238.6
68	116	13.5	136	17.1	156	21.4	186	34.8	216	47.9	236	57.5	266	73.1	296	91.1	326	110.5	356	132.3	386	155.5	416	180.3	446	208.2	476	237.6
70	115	13.3	135	16.8	155	21.2	185	34.5	215	47.5	235	57.0	265	72.5	295	90.5	325	109.8	355	131.6	385	154.7	415	179.4	445	207.3	475	236.6
72	114	13.1	134	16.6	154	21.0	184	34.1	214	47.1	234	56.5	264	72.0	294	89.9	324	109.2	354	130.8	384	153.9	414	178.5	444	206.3	474	235.6
74	113	12.9	133	16.4	153	20.8	183	33.8	213	46.7	233	56.1	263	71.4	293	89.3	323	108.5	353	130.1	383	153.1	413	177.7	443	205.4	473	234.6
76	112	12.6	132	16.2	152	20.5	182	33.4	212	46.2	232	55.6	262	70.9	292	88.7	322	107.8	352	129.4	382	152.3	412	176.8	442	204.5	472	233.6
78	111	12.4	131	16.0	151	20.3	181	33.1	211	45.8	231	55.1	261	70.4	291	88.1	321	107.2	351	128.6	381	151.5	411	175.9	441	203.5	471	232.6
80	110	12.2	130	15.8	150	20.1	180	32.7	210	45.4	230	54.7	260	69.8	290	87.5	320	106.5	350	127.9	380	150.7	410	175.1	440	202.6	470	231.6

Page 131 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

_	_										1		_		_		_		_				_				-	
82	109	12.0	129	15.6	149	19.9	179	32.4	209	45.0	229	54.2	259	69.3	289	86.9	319	105.8	349	127.2	379	149.9	409	174.2	439	201.7	469	230.6
84	108	11.8	128	15.4	148	19.7	178	32.0	208	44.6	228	53.7	258	68.8	288	86.3	318	105.2	348	126.4	378	149.1	408	173.4	438	200.7	468	229.6
86	107	11.6	127	15.1	147	19.4	177	31.7	207	44.2	227	53.3	257	68.3	287	85.7	317	104.5	347	125.7	377	148.3	407	172.5	437	199.8	467	228.6
88	106	11.4	126	14.9	146	19.2	176	31.4	206	43.7	226	52.8	256	67.7	286	85.1	316	103.8	346	125	376	147.5	406	171.6	436	198.9	466	227.6
90	105	11.1	125	14.7	145	19.0	175	31.0	205	43.3	225	52.3	255	67.2	285	84.5	315	103.2	345	124.2	375	146.7	405	170.8	435	198	465	226.7
92	104	10.9	124	14.5	144	18.8	174	30.7	204	42.9	224	51.9	254	66.7	284	83.9	314	102.5	344	123.5	374	146	404	169.9	434	197	464	225.7
94	103	10.7	123	14.3	143	18.6	173	30.3	203	42.5	223	51.4	253	66.2	283	83.3	313	101.9	343	122.8	373	145.2	403	169.1	433	196.1	463	224.7
96	102	10.5	122	14.1	142	18.4	172	30.0	202	42.1	222	51.0	252	65.6	282	82.7	312	101.2	342	122.1	372	144.4	402	168.2	432	195.2	462	223.7
98	101	10.3	121	13.9	141	18.1	171	29.7	201	41.7	221	50.5	251	65.1	281	82.1	311	100.5	341	121.3	371	143.6	401	167.4	431	194.3	461	222.7
100	100	10.1	120	13.7	140	17.9	170	29.3	200	41.3	220	50.1	250	64.6	280	81.5	310	99.9	340	120.6	370	142.8	400	166.5	430	193.4	460	221.7
102	99	9.9	119	13.5	139	17.7	169	29.0	199	40.8	219	49.6	249	64.1	279	80.9	309	99.2	339	119.9	369	142	399	165.7	429	192.5	459	220.8
104	98	9.7	118	13.2	138	17.5	168	28.6	198	40.4	218	49.1	248	63.5	278	80.4	308	98.6	338	119.2	368	141.2	398	164.8	428	191.5	458	219.8
106	97	9.5	117	13.0	137	17.3	167	28.3	197	40.0	217	48.7	247	63.0	277	79.8	307	97.9	337	118.5	367	140.5	397	164	427	190.6	457	218.8
108	96	9.3	116	12.8	136	17.1	166	28.0	196	39.6	216	48.2	246	62.5	276	79.2	306	97.3	336	117.8	366	139.7	396	163.2	426	189.7	456	217.8
110	95	9.1	115	12.6	135	16.8	165	27.6	195	39.2	215	47.8	245	62.0	275	78.6	305	96.6	335	117	365	138.9	395	162.3	425	188.8	455	216.8
112	-	-	-	-	134	16.6	164	27.3	194	38.8	214	47.3	244	61.5	274	78	304	96	334	116.3	364	138.1	394	161.5	424	187.9	454	215.9
114	-	-	-	-	133	16.4	163	27	193	38.4	213	46.9	243	61	273	77.4	303	95.3	333	115.6	363	137.4	393	160.6	423	187	453	214.9
116	-	-	-	-	132	16.2	162	26.6	192	38	212	46.4	242	60.5	272	76.9	302	94.7	332	114.9	362	136.6	392	159.8	422	186.1	452	213.9
118	-	-	-	-	131	16	161	26.3	191	37.6	211	46	241	60	271	76.3	301	94.1	331	114.2	361	135.8	391	159	421	185.2	451	213
120	-	-	-	-	130	15.8	160	26	190	37.2	210	45.6	240	59.4	270	75.7	300	93.4	330	113.5	360	135	390	158.1	420	184.3	450	212
122	-	-	-	-	129	15.6	159	25.7	189	36.8	209	45.1	239	58.9	269	75.1	299	92.8	329	112.8	359	134.3	389	157.3	419	183.4	449	211
124	-	-	-	-	128	15.4	158	25.3	188	36.4	208	44.7	238	58.4	268	74.6	298	92.1	328	112.1	358	133.5	388	156.5	418	182.5	448	210.1
126	-	-	-	-	127	15.1	157	25	187	36	207	44.2	237	57.9	267	74	297	91.5	327	111.4	357	132.7	387	155.7	417	181.6	447	209.1
128	-	-	-	-	126	14.9	156	24.7	186	35.6	206	43.8	236	57.4	266	73.4	296	90.9	326	110.7	356	132	386	154.8	416	180.7	446	208.2
130	-	-	-	-	125	14.7	155	24.4	185	35.2	205	43.4	235	56.9	265	72.8	295	90.2	325	110	355	131.2	385	154	415	179.8	445	207.2
132	-	-	-	-	124	14.5	154	24	184	34.8	204	42.9	234	56.4	264	72.3	294	89.6	324	109.3	354	130.5	384	153.2	414	178.9	444	206.3
134	-	-	-	-	123	14.3	153	23.7	183	34.4	203	42.5	233	55.9	263	71.7	293	89	323	108.6	353	129.7	383	152.4	413	178.1	443	205.3
136	-	-	-	-	122	14.1	152	23.4	182	34	202	42.1	232	55.4	262	71.2	292	88.4	322	107.9	352	128.9	382	151.6	412	177.2	442	204.3
138	-	-	-	-	121	13.9	151	23.1	181	33.7	201	41.6	231	54.9	261	70.6	291	87.7	321	107.2	351	128.2	381	150.7	411	176.3	441	203.4
140	-	-	-	-	120	13.7	150	22.8	180	33.3	200	41.2	230	54.4	260	70	290	87.1	320	106.5	350	127.4	380	149.9	410	175.4	440	202.4
In the		e of in	torm	odiata	widt	h k	con	ho 00	Joulo	tod by	Lino	ar into	rnolo	tion											1			

Page 132 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

k_{H,1} for Joist Hanger GSE and GSI - Partial nailing - F1

K _{H,1} for	JOIST	папо	er G	SE ai	ia G	31 - Pa							1		1	1			1				1		1			
	3	00	3	40	3	80	4	40	5	00	5	40	6	00	6	60	7	20	7	80	8	40	9	00	9	60	10	020
	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ
	6	4	8	4	8	4	12	6	14	8	16	8	20	10	22	12	26	14	28	14	32	16	34	18	38	20	40	20
Α	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1	В	kH.1
32	134	10.7	154	15.0	174	18.4	204	25.3	234	31.9	254	38.2	284	47.3	314	56.6	344	67.7	374	80.1	404	92.9	434	106.2	464	120.9	494	137.1
34	133	10.6	153	14.9	173	18.2	203	25.1	233	31.6	253	37.9	283	47.0	313	56.3	343	67.3	373	79.7	403	92.5	433	105.7	463	120.4	493	136.6
36	132	10.4	152	14.7	172	18.0	202	24.8	232	31.4	252	37.6	282	46.7	312	55.9	342	66.9	372	79.2	402	92	432	105.2	462	119.9	492	136
38	131	10.3	151	14.6	171	17.9	201	24.6	231	31.1	251	37.3	281	46.4	311	55.6	341	66.5	371	78.8	401	91.6	431	104.8	461	119.4	491	135.5
40	130	10.2	150	14.4	170	17.7	200	24.4	230	30.9	250	37.0	280	46.1	310	55.3	340	66.2	370	78.4	400	91.1	430	104.3	460	118.9	490	135
42	129	10.1	149	14.2	169	17.5	199	24.2	229	30.7	249	36.7	279	45.8	309	54.9	339	65.8	369	78	399	90.7	429	103.8	459	118.4	489	134.4
44	128	9.9	148	14.1	168	17.4	198	24.0	228	30.4	248	36.4	278	45.4	308	54.6	338	65.4	368	77.6	398	90.2	428	103.4	458	117.9	488	133.9
46	127	9.8	147	13.9	167	17.2	197	23.8	227	30.2	247	36.2	277	45.1	307	54.3	337	65	367	77.2	397	89.8	427	102.9	457	117.4	487	133.4
48	126	9.7	146	13.7	166	17.0	196	23.6	226	30.0	246	35.9	276	44.8	306	53.9	336	64.7	366	76.8	396	89.3	426	102.4	456	116.9	486	132.8
50	125	9.6	145	13.6	165	16.9	195	23.3	225	29.7	245	35.6	275	44.5	305	53.6	335	64.3	365	76.4	395	88.9	425	101.9	455	116.4	485	132.3
52	124	9.4	144	13.4	164	16.7	194	23.1	224	29.5	244	35.3	274	44.2	304	53.3	334	63.9	364	76	394	88.5	424	101.5	454	115.9	484	131.7
54	123	9.3	143	13.3	163	16.5	193	22.9	223	29.3	243	35.0	273	43.9	303	53	333	63.6	363	75.6	393	88	423	101	453	115.3	483	131.2
56	122	9.2	142	13.1	162	16.4	192	22.7	222	29.0	242	34.7	272	43.6	302	52.6	332	63.2	362	75.2	392	87.6	422	100.6	452	114.8	482	130.7
58	121	9.1	141	12.9	161	16.2	191	22.5	221	28.8	241	34.4	271	43.3	301	52.3	331	62.8	361	74.8	391	87.1	421	100.1	451	114.3	481	130.1
60	120	8.9	140	12.8	160	16.0	190	22.3	220	28.6	240	34.1	270	43.0	300	52	330	62.5	360	74.4	390	86.7	420	99.6	450	113.8	480	129.6
62	119	8.8	139	12.6	159	15.9	189	22.1	219	28.3	239	33.9	269	42.7	299	51.6	329	62.1	359	74	389	86.3	419	99.2	449	113.3	479	129.1
64	118	8.7	138	12.5	158	15.7	188	21.9	218	28.1	238	33.6	268	42.4	298	51.3	328	61.7	358	73.6	388	85.8	418	98.7	448	112.8	478	128.6
66	117	8.6	137	12.3	157	15.5	187	21.6	217	27.9	237	33.3	267	42.1	297	51	327	61.4	357	73.2	387	85.4	417	98.2	447	112.3	477	128
68	116	8.4	136	12.1	156	15.4	186	21.4	216	27.6	236	33.0	266	41.8	296	50.7	326	61	356	72.8	386	85	416	97.8	446	111.8	476	127.5
70	115	8.3	135	12.0	155	15.2	185	21.2	215	27.4	235	32.7	265	41.5	295	50.3	325	60.6	355	72.4	385	84.5	415	97.3	445	111.3	475	127
72	114	8.2	134	11.8	154	15.0	184	21.0	214	27.2	234	32.4	264	41.2	294	50	324	60.3	354	72	384	84.1	414	96.9	444	110.9	474	126.4
74	113	8.1	133	11.7	153	14.9	183	20.8	213	26.9	233	32.2	263	40.9	293	49.7	323	59.9	353	71.6	383	83.7	413	96.4	443	110.4	473	125.9
76	112	7.9	132	11.5	152	14.7	182	20.6	212	26.7	232	31.9	262	40.6	292	49.4	322	59.5	352	71.2	382	83.2	412	95.9	442	109.9	472	125.4
78	111	7.8	131	11.4	151	14.6	181	20.4	211	26.5	231	31.6	261	40.3	291	49	321	59.2	351	70.8	381	82.8	411	95.5	441	109.4	471	124.9
80	110	7.7	130	11.2	150	14.4	180	20.2	210	26.2	230	31.3	260	40.0	290	48.7	320	58.8	350	70.4	380	82.4	410	95	440	108.9	470	124.3
82	109	7.6	129	11.0	149	14.2	179	20.0	209	26.0	229	31.1	259	39.7	289	48.4	319	58.4	349	70.1	379	81.9	409	94.6	439	108.4	469	123.8
84	108	7.5	128	10.9	148	14.1	178	19.8	208	25.8	228	30.8	258	39.4	288	48.1	318	58.1	348	69.7	378	81.5	408	94.1	438	107.9	468	123.3
86	107	7.3	127	10.7	147	13.9	177	19.6	207	25.5	227	30.5	257	39.1	287	47.7	317	57.7	347	69.3	377	81.1	407	93.7	437	107.4	467	122.8

Page 133 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

88	106	7.2	126	10.6	146	13.7	176	19.3	206	25.3	226	30.2	256	38.8	286	47.4	316	57.4	346	68.9	376	80.7	406	93.2	436	106.9	466	122.2
90	105	7.1	125	10.4	145	13.6	175	19.1	205	25.1	225	30.0	255	38.5	285	47.1	315	57	345	68.5	375	80.2	405	92.7	435	106.4	465	121.7
92	104	7.0	124	10.3	144	13.4	174	18.9	204	24.9	224	29.7	254	38.2	284	46.8	314	56.6	344	68.1	374	79.8	404	92.3	434	105.9	464	121.2
94	103	6.9	123	10.1	143	13.3	173	18.7	203	24.6	223	29.4	253	37.9	283	46.5	313	56.3	343	67.7	373	79.4	403	91.8	433	105.4	463	120.7
96	102	6.7	122	10.0	142	13.1	172	18.5	202	24.4	222	29.2	252	37.6	282	46.1	312	55.9	342	67.3	372	79	402	91.4	432	105	462	120.2
98	101	6.6	121	9.8	141	12.9	171	18.3	201	24.2	221	28.9	251	37.3	281	45.8	311	55.6	341	66.9	371	78.5	401	90.9	431	104.5	461	119.6
100	100	6.5	120	9.6	140	12.8	170	18.1	200	23.9	220	28.6	250	37.0	280	45.5	310	55.2	340	66.5	370	78.1	400	90.5	430	104	460	119.1
102	99	6.4	119	9.5	139	12.6	169	17.9	199	23.7	219	28.4	249	36.7	279	45.2	309	54.9	339	66.2	369	77.7	399	90	429	103.5	459	118.6
104	98	6.3	118	9.3	138	12.5	168	17.7	198	23.5	218	28.1	248	36.4	278	44.9	308	54.5	338	65.8	368	77.3	398	89.6	428	103	458	118.1
106	97	6.1	117	9.2	137	12.3	167	17.5	197	23.3	217	27.8	247	36.2	277	44.6	307	54.2	337	65.4	367	76.9	397	89.1	427	102.5	457	117.6
108	96	6.0	116	9.0	136	12.1	166	17.3	196	23.0	216	27.6	246	35.9	276	44.2	306	53.8	336	65	366	76.4	396	88.7	426	102	456	117.1
110	95	5.9	115	8.9	135	12.0	165	17.1	195	22.8	215	27.3	245	35.6	275	43.9	305	53.5	335	64.6	365	76	395	88.2	425	101.6	455	116.6
112					134	11.8	164	16.9	194	22.6	214	27	244	35.3	274	43.6	304	53.1	334	64.2	364	75.6	394	87.8	424	101.1	454	116
114					133	11.7	163	16.7	193	22.4	213	26.8	243	35	273	43.3	303	52.8	333	63.9	363	75.2	393	87.4	423	100.6	453	115.5
116					132	11.5	162	16.5	192	22.2	212	26.5	242	34.7	272	43	302	52.4	332	63.5	362	74.8	392	86.9	422	100.1	452	115
118					131	11.4	161	16.3	191	21.9	211	26.3	241	34.4	271	42.7	301	52.1	331	63.1	361	74.3	391	86.5	421	99.7	451	114.5
120					130	11.2	160	16.1	190	21.7	210	26	240	34.1	270	42.4	300	51.7	330	62.7	360	73.9	390	86	420	99.2	450	114
122					129	11	159	15.9	189	21.5	209	25.8	239	33.9	269	42.1	299	51.4	329	62.3	359	73.5	389	85.6	419	98.7	449	113.5
124					128	10.9	158	15.7	188	21.3	208	25.5	238	33.6	268	41.7	298	51	328	62	358	73.1	388	85.1	418	98.2	448	113
126					127	10.7	157	15.5	187	21.1	207	25.3	237	33.3	267	41.4	297	50.7	327	61.6	357	72.7	387	84.7	417	97.8	447	112.5
128					126	10.6	156	15.3	186	20.8	206	25	236	33	266	41.1	296	50.3	326	61.2	356	72.3	386	84.3	416	97.3	446	112
130					125	10.4	155	15.1	185	20.6	205	24.8	235	32.7	265	40.8	295	50	325	60.8	355	71.9	385	83.8	415	96.8	445	111.5
132					124	10.3	154	14.9	184	20.4	204	24.5	234	32.4	264	40.5	294	49.7	324	60.5	354	71.5	384	83.4	414	96.3	444	111
134					123	10.1	153	14.8	183	20.2	203	24.3	233	32.2	263	40.2	293	49.3	323	60.1	353	71.1	383	83	413	95.9	443	110.5
136					122	10	152	14.6	182	20	202	24	232	31.9	262	39.9	292	49	322	59.7	352	70.7	382	82.5	412	95.4	442	110
138					121	9.8	151	14.4	181	19.8	201	23.8	231	31.6	261	39.6	291	48.6	321	59.3	351	70.2	381	82.1	411	94.9	441	109.5
140					120	9.6	150	14.2	180	19.5	200	23.5	230	31.3	260	39.3	290	48.3	320	59	350	69.8	380	81.7	410	94.5	440	109

Page 134 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

$k_{\text{H,2}}$ for GSE and GSI - Full or partial nailing - F2

Blank		nber of nails header		k _{H2}
	Full nailing	Partial nailing	Full nailing	Partial nailing
300	12	6	5,6	2.6
340	12	8	5,6	4.3
380	12	8	5,6	4.3
440	22	12	16,0	9
500	28	14	24,7	12
540	32	16	31,7	15.4
600	38	20	43,6	23.4
660	44	22	57,5	28.1
720	50	26	73,3	38.8
780	56	28	91,0	44.7
840	62	32	110,6	57.9
900	68	38	132,1	65.1
960	74	38	155,6	80.9
1020	80	40	180,9	89.4

Characteristic capacities for GSE/2.5 - with connector screw SSH/SSF

		F	Produ	ct capac	cities - Ti	mber to 1	Γimber - I	_arge coi	nnector s	crew		
		Fasteners	S			С	haracteri	stic capa	cities - T	imber C2	24	
References		Header	J	oist		R	1.k			R	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GSE300	2	SSH12.0x60 ⁽¹⁾	6	CNA*	8,7	9,1	9,7	9,9	7,9	8,2	8,8	9,1
GSE340	2	SSH12.0x60 ⁽¹⁾	8	CNA*	10,6	10,9	11,5	11,7	9,2	9,6	10,4	10,8
GSE380	2	SSH12.0x60 ⁽¹⁾	8	CNA*	11,0	11,3	11,7	11,9	8,5	9,0	9,9	10,3
GSE440	4	SSH12.0x60 ⁽¹⁾	12	CNA*	18,0	18,9	20,2	20,6	17,6	18,4	19,9	20,4
GSE500	4	SSH12.0x60 ⁽¹⁾	14	CNA*	20,2	21,0	22,2	22,5	20,1	20,9	22,1	22,5
GSE540	4	SSH12.0x60 ⁽¹⁾	16	CNA*	21,9	22,6	23,4	23,4	21,9	22,6	23,4	23,4
GSE600	4	SSH12.0x60 ⁽¹⁾	20	CNA*	24,0	24,1	24,1	24,1	24,0	24,1	24,1	24,1
GSE660	6	SSH12.0x60 ⁽¹⁾	22	CNA*	32,6	33,9	35,0	35,0	32,7	34,0	35,0	35,0
GSE720	6	SSH12.0x60 ⁽¹⁾	26	CNA*	35,5	35,8	35,8	35,8	35,5	35,8	35,8	35,8
GSE780	6	SSH12.0x60 ⁽¹⁾	28	CNA*	36,2	36,2	36,2	36,2	36,2	36,2	36,2	36,2
GSE840	6	SSH12.0x60 ⁽¹⁾	32	CNA*	36,4	36,4	36,4	36,4	36,4	36,4	36,4	36,4
GSE900	6	SSH12.0x60 ⁽¹⁾	34	CNA*	36,5	36,5	36,5	36,5	36,5	36,5	36,5	36,5
GSE960	6	SSH12.0x60 ⁽¹⁾	38	CNA*	36,7	36,7	36,7	36,7	36,7	36,7	36,7	36,7
GSE1020	6	SSH12.0x60 ⁽¹⁾	40	CNA*	36,8	36,8	36,8	36,8	36,8	36,8	36,8	36,8

⁽¹⁾SSH can be replaced by SSF

		ı	Produ	ct capac	cities - Ti	mber to 1	Γimber - I	Large coi	nnector s	crew		
		Fasteners		•				stic capa			24	
References		Header	J	oist		R	3.k			R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GSE300	2	SSH12.0x60 ⁽¹⁾	6	CNA*	1,9	2,4	3,5	4,3	5,0	5,0	5,0	5,0
GSE340	2	SSH12.0x60 ⁽¹⁾	8	CNA*	2,2	2,5	3,0	3,6	5,0	5,0	5,0	5,0
GSE380	2	SSH12.0x60 ⁽¹⁾	8	CNA*	2,1	2,3	2,9	3,5	5,0	5,0	5,0	5,0
GSE440	4	SSH12.0x60 ⁽¹⁾	12	CNA*	3,2	4,0	5,0	5,6	10,0	10,0	10,0	10,0
GSE500	4	SSH12.0x60 ⁽¹⁾	14	CNA*	3,5	3,9	4,4	4,8	10,0	10,0	10,0	10,0
GSE540	4	SSH12.0x60 ⁽¹⁾	16	CNA*	3,8	4,1	4,4	4,8	10,0	10,0	10,0	10,0
GSE600	4	SSH12.0x60 ⁽¹⁾	20	CNA*	4,1	4,8	5,1	5,4	10,0	10,0	10,0	10,0
GSE660	6	SSH12.0x60 ⁽¹⁾	22	CNA*	4,3	5,2	5,5	5,9	15,0	15,0	15,0	15,0
GSE720	6	SSH12.0x60 ⁽¹⁾	26	CNA*	4,5	5,7	6,1	6,5	15,0	15,0	15,0	15,0
GSE780	6	SSH12.0x60 ⁽¹⁾	28	CNA*	4,6	5,8	6,2	6,5	15,0	15,0	15,0	15,0
GSE840	6	SSH12.0x60 ⁽¹⁾	32	CNA*	4,7	6,0	6,4	6,6	15,0	15,0	15,0	15,0
GSE900	6	SSH12.0x60 ⁽¹⁾	34	CNA*	4,8	5,8	6,0	6,2	15,0	15,0	15,0	15,0
GSE960	6	SSH12.0x60 ⁽¹⁾	38	CNA*	4,9	6,2	6,5	6,7	15,0	15,0	15,0	15,0
GSE1020	6	SSH12.0x60 ⁽¹⁾	40	CNA*	4,9	6,1	6,2	6,4	15,0	15,0	15,0	15,0

⁽¹⁾ SSH can be replaced by SSF

The user shall verify the transversal tension in timber which is not included in these capacities.

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

GSE/GSI 4 mm and GLE/GLI 4 mm fire resistance R30 to EN 13501-2 - timber to timber connection:

Performance declared: 30 minutes resistance to Fire (R30) to EN 13501-2 with all faces of the hanger exposed to the fire (Table 3). The performance values were determined by a static model developed by SST validated and verified by testing to EN 1365-2 and ETAG 015 by the Assessment Report *BTC 18511FA* issued by the Building Test Centre (UKAS accredited No. 0296 and member of the Fire Test Study Group, FTSP). **Scope of Certification:** This certification applies to the following products and sizes GSE/GSI and GLE/GLI range of 4mm thick (ETA-06/0270).

Table 1: GSE/GSI (4mm thickness) Hanger Height (mm) Table 2: GLE/GLI (4mm thickness) Hanger Height (mm)

			Se	at Wid	dth (m	m)	
		100	120	140	160	180	200
	380	140	130	-	-	-	-
	440	170	160	-	-	-	-
	500	200	190	180	170	160	150
Ē	540	220	210	200	190	180	170
<u> </u>	600	250	240	230	220	210	200
gt	660	280	270	260	250	240	230
Blank Length (mm)	720	310	300	290	280	270	260
¥	780	340	330	320	310	300	290
Bla	840	370	360	350	340	330	320
	900	400	390	380	370	360	350
	960	430	420	410	400	390	380
	1020	460	450	440	430	420	410

			Se	at Wic	lth (mr	n)	
		100	120	140	160	180	200
	380	140	-	-	-	-	-
	440	170	160	150	140	-	-
	500	200	190	180	170	-	-
Ē	540	220	210	200	190	-	-
Blank Length (mm)	600	250	240	230	220	-	-
ıgt	660	280	270	260	250	-	-
Ler	720	310	300	290	280	-	-
ᆂ	780	-	-	-	-	-	-
Bla	840	-	-	-	-	-	-
	900	-	-	-	-	-	-
	960	-	-	-	-	-	-
	1020	-	-	-	-	-	-

Service Class: 1 and 2 to Eurocode 5

Fasteners: Fully nailed with CNA4,0x75mm or CSA5.0x80 (ETA-04/0013)

Timber: Untreated C24 strength class timber to EN338. The joist was exposed on 3 faces (sides and bottom) and the header on 2 faces (side and bottom).

Boundary conditions:

- Header height ≥ Joist height ≥ Hanger height + 10 mm
- Joist end shall be within the header face edges
- Member width ≥ 100 mm
- Gap between members ≤ 3 mm

Any other relevant National minimum requirement shall be fulfilled.

Table 3: Characteristic vertical load bearing capacity R30 to EN 13501-2, F_{v,Rk,fi}, in kN

				Seat Wid	Ith (mm)	
		100	120	140	160	180	200
	380	1	1	-	-	-	-
	440	2.52	2.52	2.52	2.52	-	-
	500	3.55	3.55	2.52	2.52	2.52	2.52
Blank Length (mm)	540	4.72	4.72	3.55	3.55	3.55	3.55
th (600	7.3	7.3	5.98	5.98	5.98	5.98
, and	660	8.65	8.65	7.3	7.3	7.3	7.3
Ĺ	720	11.4	11.4	10.03	10.03	10.03	10.03
an	780	12.76	12.76	11.4	11.4	11.4	11.4
<u> </u>	840	15.44	15.44	14.11	14.11	14.11	14.11
	900	18.04	18.04	15.44	15.44	15.44	15.44
	960	19.32	19.32	16.75	16.75	16.75	16.75
	1020	20.57	20.57	19.32	19.32	19.32	19.32

$$E_{d,fi} \le R_{d,30,fi}$$

 $R_{d,30,fi} = F_{v,Rk,fi} / \gamma_{M,fi}$

where,

 $\textit{\textbf{E}}_{d,fi}$ is the design effect of actions for the fire situation, determined in accordance with EN 1995-1-2.

 $R_{\rm d,30,fi}$ is the design resistance in the fire situation.

 $\gamma_{M,fi}$ is the material safety factor for the fire situation. The value is 1, unless otherwise specify in the National annex.

Simplified calculation of E_{d,fi} according to Eurocode 5 part 1-2:

$$E_{d,f_l} = \eta_{f_l} E_d \tag{2.8}$$

where:

E_d is the design effect of actions for normal temperature design for the fundamental combination of actions, see EN 1990:2002;

 $\eta_{\rm fi}$ is the reduction factor for the design load in the fire situation.

(3) The reduction factor $\eta_{\bar{n}}$ for load combination (6.10) in EN 1990:2002 should be taken as

$$\eta_{fi} = \frac{G_k + \psi_{fi} Q_{k,1}}{\gamma_G G_k + \gamma_{Q,1} Q_{k,1}}$$
(2.9)

or, for load combinations (6.10a) and (6.10b) in EN 1990:2002, as the smallest value given by the following two expressions

$$\eta_{\rm fi} = \frac{G_{\rm k} + \psi_{\rm fi} \ Q_{\rm k,1}}{\gamma_{\rm G} \ G_{\rm k} + \gamma_{\rm Q,1} \ Q_{\rm k,1}} \tag{2.9a}$$

$$\eta_{fi} = \frac{G_k + \psi_{fi} Q_{k,1}}{\xi \gamma_G G_k + \gamma_{O,1} Q_{k,1}}$$
(2.9b)

where:

 $Q_{k,1}$ is the characteristic value of the leading variable action;

 G_k is the characteristic value of the permanent action;

 $\gamma_{\rm G}$ is the partial factor for permanent actions;

 $\gamma_{Q,1}$ is the partial factor for variable action 1;

is the combination factor for frequent values of variable actions in the fire situation, given either by $\psi_{1,1}$ or $\psi_{2,1}$, see EN 1991-1-1; $\frac{\text{AC}_2}{\text{C}_2}$

 ξ is a reduction factor for unfavourable permanent actions G.

Soat Width (mm)

GSE 4 mm fire resistance R30 to EN 13501-2 - timber to concrete connection:

Performance declared: 30 minutes resistance to Fire (R30) to EN 13501-2 with all faces of the hanger exposed to the fire (Table 3). The performance values were determined by a static model developed by SST validated and verified by testing to EN 1365-2 and ETAG 015 by the Assessment Report *BTC 19992FA* issued by the Building Test Centre (UKAS accredited No. 0296 and member of the Fire Test Study Group, FTSP). **Scope of Certification:** This certification applies to the following products and sizes GSE range of 4mm thick (ETA-06/0270) for timber to concrete connection

Table 1: GSE/GSI (4mm thickness) Hanger Height (mm) Table 2: GSE/4 Number of anchors used on each hanger

			56	eat wic	ith (mi	m)	
		100	120	140	160	180	200
	380	140	130	-	-	-	-
	440	170	160	-	-	-	-
	500	200	190	180	170	160	150
Œ	540	220	210	200	190	180	170
Blank Length (mm)	600	250	240	230	220	210	200
gth	660	280	270	260	250	240	230
Ler	720	310	300	290	280	270	260
¥	780	340	330	320	310	300	290
Bla	840	370	360	350	340	330	320
	900	400	390	380	370	360	350
	960	430	420	410	400	390	380
	1020	460	450	440	430	420	410

		Jeat Width (IIIII)									
		100	120	140	160	180	200				
	380	2	2	-	-	-	-				
	440	4	4	-	-	-	-				
	500	4	4	2	2	2	2				
Ē	540	4	4	4	4	4	4				
Ē	600	4	4	4	4	4	4				
Blank Length (mm)	660	6	6	4	4	4	4				
Ler	720	6	6	6	6	6	6				
X	780	6	6	6	6	6	6				
Bla	840	6	6	6	6	6	6				
	900	6	6	6	6	6	6				
	960	6	6	6	6	6	6				
	1020	6	6	6	6	6	6				

Seat Width (mm)

Service Class: 1 and 2 to Eurocode 5

Fasteners:

- Fixed on concrete C25/30 support with BOAX-II M12-103/5 or equivalent
- Fully nailed with CNA4,0x75mm or CSA5.0x80 (ETA-04/0013) on timber

Timber: Untreated C24 strength class timber to EN338. The joist was exposed on 3 faces (sides and bottom). **Boundary conditions:**

- Header height ≥ Joist height ≥ Hanger height + 10 mm
- · Joist end shall be within the header face edges
- Member width ≥ 100 mm
- Gap between members ≤ 3 mm

Any other relevant National minimum requirement shall be fulfilled.

Table 3: Characteristic vertical load bearing capacity R30 to EN 13501-2, Fv,Rk,fi, in kN

			5	Seat Wid	th (mm)	
		100	120	140	160	180	200
	380	10	10	-	-	-	-
	440	20	20	-	-	-	-
	500	20	20	10	10	10	10
Blank Length (mm)	540	20	20	20	20	20	20
다 (600	20	20	20	20	20	20
l d	660	20.57	20.57	20	20	20	20
Le Le	720	20.57	20.57	20.57	20.57	20.57	20.57
an	780	20.57	20.57	20.57	20.57	20.57	20.57
<u>m</u>	840	20.57	20.57	20.57	20.57	20.57	20.57
	900	20.57	20.57	20.57	20.57	20.57	20.57
	960	20.57	20.57	20.57	20.57	20.57	20.57
	1020	20.57	20.57	20.57	20.57	20.57	20.57

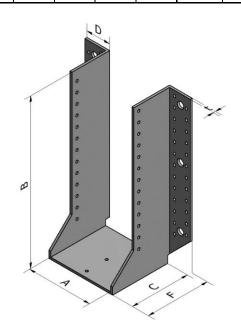
$$E_{\rm d,fi} \leq R_{\rm d,30,fi}$$

 $R_{\rm d,30,fi} = F_{\rm v,Rk,fi} / \gamma_{\rm M,fi}$

where.

 $\emph{\textbf{E}}_{d,fi}$ is the design effect of actions for the fire situation, determined in accordance with EN 1995-1-2.

 $R_{\text{d},30,\text{fi}}$ is the design resistance in the fire situation.


 $\gamma_{M,fi}$ is the material safety factor for the fire situation. The value is 1, unless otherwise specify in the National annex.

D21 GSE-AL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GSE-AL	Steel ref 1 - Steel ref 2	-

Dimensions

Dimensions				_					ŀ	loles		
Blank		Dimens	ions [n	nm]				Hea	der		Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
500/2.5X-AL	135-200	(500-A)/2	110	42.5	115	2.5	22	Ø5	2	Ø13	12	Ø5
540/2.5X-AL	135-200	(540-A)/2	110	42.5	115	2.5	26	Ø5	4	Ø13	14	Ø5
600/2.5X-AL	135-200	(600-A)/2	110	42.5	115	2.5	32	Ø5	4	Ø13	18	Ø5
660/2.5X-AL	135-200	(660-A)/2	110	42.5	115	2.5	38	Ø5	4	Ø13	20	Ø5
720/2.5X-AL	135-200	(720-A)/2	110	42.5	115	2.5	44	Ø5	6	Ø13	24	Ø5
780/2.5X-AL	135-200	(780-A)/2	110	42.5	115	2.5	50	Ø5	6	Ø13	26	Ø5
840/2.5X-AL	135-200	(840-A)/2	110	42.5	115	2.5	56	Ø5	6	Ø13	30	Ø5
900/2.5X-AL	135-200	(900-A)/2	110	42.5	115	2.5	62	Ø5	6	Ø13	32	Ø5
960/2.5X-AL	135-200	(960-A)/2	110	42.5	115	2.5	66	Ø5	6	Ø13	34	Ø5
1020/2.5X-AL	135-200	(1020-A)/2	110	42.5	115	2.5	74	Ø5	6	Ø13	38	Ø5
500/4X-AL	135-200	(500-A)/2	110	45.5	118	4	22	Ø5	2	Ø13	12	Ø5
540/4X-AL	135-200	(540-A)/2	110	45.5	118	4	26	Ø5	4	Ø13	14	Ø5
600/4X-AL	135-200	(600-A)/2	110	45.5	118	4	32	Ø5	4	Ø13	18	Ø5
660/4X-AL	135-200	(660-A)/2	110	45.5	118	4	38	Ø5	4	Ø13	20	Ø5
720/4X-AL	135-200	(720-A)/2	110	45.5	118	4	44	Ø5	6	Ø13	24	Ø5
780/4X-AL	135-200	(780-A)/2	110	45.5	118	4	50	Ø5	6	Ø13	26	Ø5
840/4X-AL	135-200	(840-A)/2	110	45.5	118	4	56	Ø5	6	Ø13	30	Ø5
900/4X-AL	135-200	(900-A)/2	110	45.5	118	4	62	Ø5	6	Ø13	32	Ø5
960/4X-AL	135-200	(960-A)/2	110	45.5	118	4	66	Ø5	6	Ø13	34	Ø5
1020/4X-AL	135-200	(1020-A)/2	110	45.5	118	4	74	Ø5	6	Ø13	38	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C

 $k_{H,1}$ for Joist Hanger GSE-AL and GSI-AL - Full nailing - F1

Name	K _{H,1} fC					1										1		1			
Name		500	-AL	540	-AL	600	-AL	660	-AL	720	-AL	780	D-AL	84	0-AL	90	0-AL	960	0-AL	102	20-AL
Math																					
186		22	12	26	14		18		20	44	24		26		30		32	66	34		38
138 181 33.1 201 41.2 231 54.6 261 70.4 291 87.6 321 107.2 351 128.2 381 151.5 411 176.8 444 203.4 140 180 32.7 200 40.8 230 54.1 260 69.8 290 87 320 106.5 350 127.4 380 150.7 410 175.9 440 202.4 142 179 32.4 199 40.4 229 53.6 259 69.3 289 86.4 319 105.5 349 126.7 379 149.9 409 175.1 439 201.4 414 478 32.0 198 40.0 228 53.6 258 68.8 288 85.8 318 105.2 348 126 378 149.1 408 174.2 438 202.4 446 177 31.7 197 36.6 227 52.7 57 68.3 287 85.2 317 104.5 347 125.2 377 148.3 407 173.3 437 199.1 148 176 31.4 196 39.2 226 52.3 256 67.7 286 84.6 316 103.8 346 124.5 376 147.5 406 172.5 436 198.3 155 177 30.7 30.7 30.8 223 50.8 253 66.7 286 84.6 316 103.8 346 124.5 376 147.5 406 172.5 436 198.3 155 177 30.7 30.7 30.8 223 50.9 253 66.2 283 82.8 313 101.9 343 122.3 373 145.2 403 169.9 433 196.5 156 172 30.0 192 37.7 222 50.5 252 65.6 282 82.2 312 101.2 342 121.6 372 144.4 402 169.1 432 195.5 158 177 29.3 190 36.9 220 49.5 250 64.6 280 81.1 310 99.9 340 120.2 370 142.8 400 167.4 430 193.4 160 170 29.3 190 36.9 220 49.5 250 64.6 280 81.1 310 99.9 340 120.2 370 142.8 400 167.4 430 193.4 160 167 28.3 187 35.7 217 48.2 247 63. 277 79.3 307 97.9 337 11.8 361 142.3 396 165.5 248 147.4 49.2 148.6 1	Α	В	k H.1																		
140 180 32.7 200 40.8 230 54.1 260 69.8 290 87 320 106.5 350 127.4 380 150.7 410 175.9 440 2021 144 178 32.4 199 40.4 228 53.6 259 69.3 289 86.8 281 105.8 349 126.7 379 149.9 409 175.1 439 201.1 441 478 32.0 198 40.0 228 53.2 258 68.8 288 88.8 288 88.8 318 105.2 348 126 378 149.1 408 174.2 438 200.1 448 176 31.4 196 39.2 226 52.3 256 67.7 286 84.6 316 103.8 346 124.5 376 147.5 406 172.5 346 198.1 150 175 31.0 195 38.8 225 51.8 255 67.2 286 84.6 316 103.8 346 124.5 376 146.7 405 171.6 435 198.1 150 175 31.0 195 38.8 225 51.8 255 67.2 286 84.8 315 103.2 345 123.8 375 146.7 405 171.6 435 198.1 150 175 31.0 195 38.8 225 51.8 255 67.2 286 84.8 315 103.2 345 123.8 375 146.7 405 171.6 435 198.1 150 175 31.0 195 38.8 225 51.8 255 67.2 286 84.8 315 103.2 345 123.8 375 146.7 405 171.6 435 198.1 150 175 31.0 195 38.8 225 51.8 255 67.2 286 84.8 315 103.2 345 123.8 375 146.7 405 171.6 435 198.1 150 175 31.0 195 38.8 225 51.8 255 66.6 282 82.2 312 101.9 343 122.3 373 145.2 403 169.9 433 196.1 150 47	136	182	33.4	202	41.6	232	55.0	262	70.9	292	88.2	322	107.8	352	128.9	382	152.3	412	177.7	420	204.5
142 179 32.4 199 40.4 229 53.6 259 69.3 289 86.4 319 105.8 349 126.7 379 149.9 409 175.1 439 201. 144 178 32.0 198 40.0 228 53.2 258 68.8 288 85.8 318 105.2 348 126 376 149.1 408 174.2 438 202. 148 176 31.4 196 39.2 256 52.3 266 67.7 286 84.6 316 103.3 36 124.5 76 475 496 49.8 49.9 49.8 43.1 102.5 344 123.4 74.8 406 172.5 37.7 146 40 170.8 49.9 40.9 28.3 68.2 283 83.1 101.9 342 121.6 372 144.4 402 169.1 433 199.1 158.9 433 196.2	138	181	33.1	201	41.2	231	54.6	261	70.4	291	87.6	321	107.2	351	128.2	381	151.5	411	176.8	441	203.5
144 178 32.0 198 40.0 226 53.2 258 68.8 288 85.8 318 105.2 378 149.1 408 174.2 438 200. 146 177 31.7 197 39.6 227 52.7 257 68.3 287 85.2 317 104.5 376 125.2 377 148.3 407 173.3 437 199.1 148 176 31.0 195 38.8 226 51.8 255 67.2 285 84 315 103.2 345 124.5 406 72.2 86.2 283 83.8 314 102.5 374 146 404 170.8 434 191 1554 173 30.0 192 37.7 222 50.5 252 66.2 282 82.2 312 101.2 32.1 44.4 402 169.9 433 196.1 1560 172 30.0	140	180	32.7	200	40.8	230	54.1	260	69.8	290	87	320	106.5	350	127.4	380	150.7	410	175.9	440	202.6
146 177 31.7 197 39.6 227 52.7 257 68.3 287 85.2 317 104.5 347 125.2 377 148.3 407 173.3 437 199.1 148 176 31.4 196 39.2 226 52.3 256 67.7 286 84.6 316 103.8 375 146.7 406 172.5 436 198.3 150 177 30.3 193 38.0 225 51.8 255 66.2 284 83.4 314 102.5 344 123.3 374 146 404 170.8 434 191 156 172 30.0 192 37.7 225 50.5 252 65.6 282 82.2 311 101.2 342 121.6 372 144.4 402 169.1 432 195. 158 171 29.7 191 37.3 249 49.5 250 6	142	179	32.4	199	40.4	229	53.6	259	69.3	289	86.4	319	105.8	349	126.7	379	149.9	409	175.1	439	201.7
148 176 31.4 196 39.2 226 52.3 256 67.7 286 84.6 316 103.8 346 124.5 376 147.5 406 172.5 436 198.3 150 175 31.0 195 38.8 225 51.8 255 67.2 285 84 315 103.2 345 123.8 375 146.7 405 171.6 435 193 156 173 30.3 193 38.0 223 50.9 253 66.2 283 82.8 313 101.9 343 122.3 373 145.2 403 169.9 433 196. 156 172 30.0 192 37.7 222 50.5 252 65.6 282 82.2 312 101.0 341 120.9 37 144.4 402 169.1 432 195.3 158 171 29.9 193 36.5 219 4	144	178	32.0	198	40.0	228	53.2	258	68.8	288	85.8	318	105.2	348	126	378	149.1	408	174.2	438	200.7
150 175 31.0 195 38.8 225 51.8 255 67.2 285 84 315 103.2 348 123.8 375 146.7 405 171.6 435 191 152 174 30.7 194 38.4 224 51.4 254 66.7 284 83.4 314 102.5 344 123.1 374 146 404 170.8 434 193 156 172 30.0 192 37.7 222 50.5 252 66.6 282 82.2 312 101.2 342 121.6 372 144.4 402 169.1 431 193.1 193.1 146.7 402 169.1 140.1 140.1 140.1 140.1 140.2 377 142.8 400 167.4 430 193.1 194.1 140.2 140.1 140.5 341 120.9 371 143.6 401 169.2 140.1 140.2 140.1	146	177	31.7	197	39.6	227	52.7	257	68.3	287	85.2	317	104.5	347	125.2	377	148.3	407	173.3	437	199.8
152 174 30.7 194 38.4 224 51.4 254 66.7 284 83.4 314 102.5 344 123.1 374 146 404 170.8 434 193.1 156 173 30.0 192 37.7 222 50.5 252 65.6 282 82.2 312 101.2 342 121.6 372 144.4 402 169.1 432 195.1 158 171 29.7 191 37.3 221 50.0 251 65.1 281 81.6 311 100.5 341 120.9 371 143.6 401 168.2 431 194.1 160 170 29.3 190 36.5 219 49.1 249 64.1 279 80.5 309 99.2 339 119.5 369 142 399 166.5 429 192.4 164 168 28.6 188 36.1 218	148	176	31.4	196	39.2	226	52.3	256	67.7	286	84.6	316	103.8	346	124.5	376	147.5	406	172.5	436	198.9
154 173 30.3 193 38.0 223 50.9 253 66.2 283 82.8 313 101.9 343 122.3 373 145.2 403 169.9 433 196. 156 172 30.0 192 37.7 222 50.5 252 65.6 282 82.2 312 101.2 342 121.6 372 144.4 402 169.1 432 195.2 158 171 29.7 191 37.3 221 50.0 251 65.1 281 81.6 311 100.5 341 120.9 371 143.6 401 168.2 431 194.1 194.1 40.0 167.2 420 163.2 41.1 400 167.4 430 193.4 193.2 371 143.6 401 166.2 28.2 81.1 310 99.9 339 119.5 369 142.8 40.1 167.2 42.1 40.1 42.1 <td< td=""><td>150</td><td>175</td><td>31.0</td><td>195</td><td>38.8</td><td>225</td><td>51.8</td><td>255</td><td>67.2</td><td>285</td><td>84</td><td>315</td><td>103.2</td><td>345</td><td>123.8</td><td>375</td><td>146.7</td><td>405</td><td>171.6</td><td>435</td><td>198</td></td<>	150	175	31.0	195	38.8	225	51.8	255	67.2	285	84	315	103.2	345	123.8	375	146.7	405	171.6	435	198
156 172 30.0 192 37.7 222 50.5 252 65.6 282 82.2 312 101.2 342 121.6 372 144.4 402 169.1 432 195.6 158 177 29.7 191 37.3 221 50.0 251 65.1 281 81.6 311 100.5 341 120.9 371 143.6 401 168.2 431 194.7 160 170 29.3 190 36.9 220 49.5 250 64.6 280 81.1 310 99.9 340 120.2 370 142.8 400 167.4 430 193. 162 169 29.0 189 36.5 219 49.1 249 64.1 279 80.5 309 99.2 339 119.5 369 142 399 166.5 429 192.5 164 26.8 83.6 18.1 33.5 216 <t< td=""><td>152</td><td>174</td><td>30.7</td><td>194</td><td>38.4</td><td>224</td><td>51.4</td><td>254</td><td>66.7</td><td>284</td><td>83.4</td><td>314</td><td>102.5</td><td>344</td><td>123.1</td><td>374</td><td>146</td><td>404</td><td>170.8</td><td>434</td><td>197</td></t<>	152	174	30.7	194	38.4	224	51.4	254	66.7	284	83.4	314	102.5	344	123.1	374	146	404	170.8	434	197
158 171 29.7 191 37.3 221 50.0 251 65.1 281 81.6 311 100.5 341 120.9 371 143.6 401 168.2 431 194.6 160 170 29.3 190 36.9 220 49.5 250 64.6 280 81.1 310 99.9 340 120.2 370 142.8 400 167.4 430 193.4 162 169 29.0 189 36.5 219 49.1 249 64.1 279 80.5 309 99.2 339 119.5 369 142 399 166.5 429 192.5 166 167 28.3 187 35.7 217 48.2 247 63 277 79.3 307 97.9 337 118 361 139.7 164.8 219.1 426 62.5 276 78.7 306 97.3 336 117.5 366 <td< td=""><td>154</td><td>173</td><td>30.3</td><td>193</td><td>38.0</td><td>223</td><td>50.9</td><td>253</td><td>66.2</td><td>283</td><td>82.8</td><td>313</td><td>101.9</td><td>343</td><td>122.3</td><td>373</td><td>145.2</td><td>403</td><td>169.9</td><td>433</td><td>196.1</td></td<>	154	173	30.3	193	38.0	223	50.9	253	66.2	283	82.8	313	101.9	343	122.3	373	145.2	403	169.9	433	196.1
160 170 29.3 190 36.9 220 49.5 250 64.6 280 81.1 310 99.9 340 120.2 370 142.8 400 167.4 430 193.4 162 169 29.0 189 36.5 219 49.1 249 64.1 279 80.5 309 99.2 339 119.5 369 142 399 166.5 429 192.5 164 168 28.6 188 36.1 218 48.6 248 63.5 278 79.9 307 97.9 337 118 367 140.5 397 164.8 219 48.2 247 63 277 79.3 307 97.9 337 118 367 140.5 397 164.8 247 190.6 275 78.1 305 96.6 335 116.6 365 138.9 395 163.1 425 188.3 172 148.2 149.6	156	172	30.0	192	37.7	222	50.5	252	65.6	282	82.2	312	101.2	342	121.6	372	144.4	402	169.1	432	195.2
162 169 29.0 189 36.5 219 49.1 249 64.1 279 80.5 309 99.2 339 119.5 369 142 399 166.5 429 192.5 164 168 28.6 188 36.1 218 48.6 248 63.5 278 79.9 308 98.6 338 118.7 368 141.2 398 165.7 428 191.8 166 167 28.3 187 35.7 217 48.2 247 63 277 79.3 307 97.9 337 118 367 140.5 397 164.8 427 190.6 168 166 28.0 186 35.3 216 47.8 246 62.5 276 78.7 306 97.3 336 117.3 366 139.7 396 164.8 426 189.3 170 165 27.6 185 34.6 274 61.5<	158	171	29.7	191	37.3	221	50.0	251	65.1	281	81.6	311	100.5	341	120.9	371	143.6	401	168.2	431	194.3
164 168 28.6 188 36.1 218 48.6 248 63.5 278 79.9 308 98.6 338 118.7 368 141.2 398 165.7 428 191.8 166 167 28.3 187 35.7 217 48.2 247 63 277 79.3 307 97.9 337 118 367 140.5 397 164.8 427 190.6 168 166 28.0 186 35.3 216 47.8 246 62.5 276 78.1 305 96.6 335 116.6 365 138.9 395 163.1 425 188.3 172 164 27.3 184 34.6 214 46.9 244 61.5 274 77.6 304 96 334 115.9 364 138.1 394 162.3 421 187.3 48.2 187.3 48.2 48.2 48.8 48.2 48.3 <	160	170	29.3	190	36.9	220	49.5	250	64.6	280	81.1	310	99.9	340	120.2	370	142.8	400	167.4	430	193.4
166 167 28.3 187 35.7 217 48.2 247 63 277 79.3 307 97.9 337 118 367 140.5 397 164.8 427 190.6 168 166 28.0 186 35.3 216 47.8 246 62.5 276 78.7 306 97.3 336 117.3 366 139.7 396 164 426 189.3 170 165 27.6 185 35.0 215 47.3 245 62 275 78.1 305 96.6 335 116.6 365 138.9 395 163.1 425 188.3 172 164 27.3 184 34.6 214 46.9 244 61.5 274 77.6 304 96 334 115.9 364 138.1 394 162.3 421 187.3 421 61.5 274 77.6 304 96.3 333 115.9<	162	169	29.0	189	36.5	219	49.1	249	64.1	279	80.5	309	99.2	339	119.5	369	142	399	166.5	429	192.5
168 166 28.0 186 35.3 216 47.8 246 62.5 276 78.7 306 97.3 336 117.3 366 139.7 396 164 426 189.1 170 165 27.6 185 35.0 215 47.3 245 62 275 78.1 305 96.6 335 116.6 365 138.9 395 163.1 425 188.8 172 164 27.3 184 34.6 214 46.9 244 61.5 274 77.6 304 96 334 115.9 364 138.1 394 162.3 424 187.5 174 163 27.0 183 34.2 213 46.4 243 61 273 77 303 95.3 333 115.2 363 137.4 393 161.4 423 18 176 162 26.6 182 33.8 212 46.0 242 60.5 272 76.4 302 94.7 332 114.5 362 <td>164</td> <td>168</td> <td>28.6</td> <td>188</td> <td>36.1</td> <td>218</td> <td>48.6</td> <td>248</td> <td>63.5</td> <td>278</td> <td>79.9</td> <td>308</td> <td>98.6</td> <td>338</td> <td>118.7</td> <td>368</td> <td>141.2</td> <td>398</td> <td>165.7</td> <td>428</td> <td>191.5</td>	164	168	28.6	188	36.1	218	48.6	248	63.5	278	79.9	308	98.6	338	118.7	368	141.2	398	165.7	428	191.5
170 165 27.6 185 35.0 215 47.3 245 62 275 78.1 305 96.6 335 116.6 365 138.9 395 163.1 425 188.8 172 164 27.3 184 34.6 214 46.9 244 61.5 274 77.6 304 96 334 115.9 364 138.1 394 162.3 424 187.5 174 163 27.0 183 34.2 213 46.4 243 61 273 77 303 95.3 333 115.2 363 137.4 393 161.4 423 18 176 162 26.6 182 33.8 212 46.0 242 60.5 272 76.4 302 94.7 332 114.5 362 136.6 392 160.6 422 186.5 178 161 26.3 181 33.5 211 45.5 241 60 271 75.8 301 94.7 331 113.8 361 <td>166</td> <td>167</td> <td>28.3</td> <td>187</td> <td>35.7</td> <td>217</td> <td>48.2</td> <td>247</td> <td>63</td> <td>277</td> <td>79.3</td> <td>307</td> <td>97.9</td> <td>337</td> <td>118</td> <td>367</td> <td>140.5</td> <td>397</td> <td>164.8</td> <td>427</td> <td>190.6</td>	166	167	28.3	187	35.7	217	48.2	247	63	277	79.3	307	97.9	337	118	367	140.5	397	164.8	427	190.6
172 164 27.3 184 34.6 214 46.9 244 61.5 274 77.6 304 96 334 115.9 364 138.1 394 162.3 424 187.5 174 163 27.0 183 34.2 213 46.4 243 61 273 77 303 95.3 333 115.2 363 137.4 393 161.4 423 187.5 176 162 26.6 182 33.8 212 46.0 242 60.5 272 76.4 302 94.7 332 114.5 362 136.6 392 160.6 422 186.6 178 161 26.3 181 33.5 211 45.5 241 60 271 75.8 301 94.1 331 113.8 361 135.8 391 159.8 421 185.2 180 160 260.0 180 33.1 210 45.1 240 59.4 270 75.3 300 93.4 330 113.1 3	168	166	28.0	186	35.3	216	47.8	246	62.5	276	78.7	306	97.3	336	117.3	366	139.7	396	164	426	189.7
174 163 27.0 183 34.2 213 46.4 243 61 273 77 303 95.3 333 115.2 363 137.4 393 161.4 423 183 176 162 26.6 182 33.8 212 46.0 242 60.5 272 76.4 302 94.7 332 114.5 362 136.6 392 160.6 422 186.6 178 161 26.3 181 33.5 211 45.5 241 60 271 75.8 301 94.1 331 113.8 361 135.8 391 159.8 421 185.2 180 160 26.0 180 33.1 210 45.1 240 59.4 270 75.3 300 93.4 330 113.1 360 135.8 391 159.8 421 185.2 182 159 25.7 179 32.7 209 44.7 239 58.9 269 74.7 299 92.8 329 112.4 35	170	165	27.6	185	35.0	215	47.3	245	62	275	78.1	305	96.6	335	116.6	365	138.9	395	163.1	425	188.8
176 162 26.6 182 33.8 212 46.0 242 60.5 272 76.4 302 94.7 332 114.5 362 136.6 392 160.6 422 186.7 178 161 26.3 181 33.5 211 45.5 241 60 271 75.8 301 94.1 331 113.8 361 135.8 391 159.8 421 185.2 180 160 26.0 180 33.1 210 45.1 240 59.4 270 75.3 300 93.4 330 113.1 360 135 390 158.9 420 184.3 182 159 25.7 179 32.7 209 44.7 239 58.9 269 74.7 299 92.8 329 112.4 359 134.3 389 158.1 419 183.4 184 158 25.3 178 32.3 208 44.2 238 58.4 268 74.1 298 92.1 328 111.7 <t< td=""><td>172</td><td>164</td><td>27.3</td><td>184</td><td>34.6</td><td>214</td><td>46.9</td><td>244</td><td>61.5</td><td>274</td><td>77.6</td><td>304</td><td>96</td><td>334</td><td>115.9</td><td>364</td><td>138.1</td><td>394</td><td>162.3</td><td>424</td><td>187.9</td></t<>	172	164	27.3	184	34.6	214	46.9	244	61.5	274	77.6	304	96	334	115.9	364	138.1	394	162.3	424	187.9
178 161 26.3 181 33.5 211 45.5 241 60 271 75.8 301 94.1 331 113.8 361 135.8 391 159.8 421 185.2 180 160 26.0 180 33.1 210 45.1 240 59.4 270 75.3 300 93.4 330 113.1 360 135 390 158.9 420 184.3 182 159 25.7 179 32.7 209 44.7 239 58.9 269 74.7 299 92.8 329 112.4 359 134.3 389 158.1 419 183.4 184 158 25.3 178 32.3 208 44.2 238 58.4 268 74.1 298 92.1 328 111.7 358 133.5 388 157.3 418 182.9 186 157 25.0 177 32.0 207 43.8 237 57.9 267 73.6 297 91.5 327 111	174	163	27.0	183	34.2	213	46.4	243	61	273	77	303	95.3	333	115.2	363	137.4	393	161.4	423	187
180 160 26.0 180 33.1 210 45.1 240 59.4 270 75.3 300 93.4 330 113.1 360 135 390 158.9 420 184.3 182 159 25.7 179 32.7 209 44.7 239 58.9 269 74.7 299 92.8 329 112.4 359 134.3 389 158.1 419 183.4 184 158 25.3 178 32.3 208 44.2 238 58.4 268 74.1 298 92.1 328 111.7 358 133.5 388 157.3 418 182.9 186 157 25.0 177 32.0 207 43.8 237 57.9 267 73.6 297 91.5 327 111 357 132.7 387 156.4 417 181.6 188 156 24.7 176 31.6 206 43.3 236 57.4 266 73 296 90.9 326 110.3	176	162	26.6	182	33.8	212	46.0	242	60.5	272	76.4	302	94.7	332	114.5	362	136.6	392	160.6	422	186.1
182 159 25.7 179 32.7 209 44.7 239 58.9 269 74.7 299 92.8 329 112.4 359 134.3 389 158.1 419 183.4 184 158 25.3 178 32.3 208 44.2 238 58.4 268 74.1 298 92.1 328 111.7 358 133.5 388 157.3 418 182.5 186 157 25.0 177 32.0 207 43.8 237 57.9 267 73.6 297 91.5 327 111 357 132.7 387 156.4 417 181.6 188 156 24.7 176 31.6 206 43.3 236 57.4 266 73 296 90.9 326 110.3 356 132 386 155.6 416 180.5 190 155 24.4 175 31.2 205 42.9 235 56.9 265 72.4 295 90.2 325 109.6	178	161	26.3	181	33.5	211	45.5	241	60	271	75.8	301	94.1	331	113.8	361	135.8	391	159.8	421	185.2
184 158 25.3 178 32.3 208 44.2 238 58.4 268 74.1 298 92.1 328 111.7 358 133.5 388 157.3 418 182.5 186 157 25.0 177 32.0 207 43.8 237 57.9 267 73.6 297 91.5 327 111 357 132.7 387 156.4 417 181.6 188 156 24.7 176 31.6 206 43.3 236 57.4 266 73 296 90.9 326 110.3 356 132 386 155.6 416 180.7 190 155 24.4 175 31.2 205 42.9 235 56.9 265 72.4 295 90.2 325 109.6 355 131.2 385 154.8 415 179.8 192 154 24.0 174 30.9 204 42.5 234 56.4 264 71.9 294 89.6 324 108.9	180	160	26.0	180	33.1	210	45.1	240	59.4	270	75.3	300	93.4	330	113.1	360	135	390	158.9	420	184.3
186 157 25.0 177 32.0 207 43.8 237 57.9 267 73.6 297 91.5 327 111 357 132.7 387 156.4 417 181.6 188 156 24.7 176 31.6 206 43.3 236 57.4 266 73 296 90.9 326 110.3 356 132 386 155.6 416 180.7 190 155 24.4 175 31.2 205 42.9 235 56.9 265 72.4 295 90.2 325 109.6 355 131.2 385 154.8 415 179.8 192 154 24.0 174 30.9 204 42.5 234 56.4 264 71.9 294 89.6 324 108.9 354 130.5 384 153.9 414 178.9 194 153 23.7 173 30.5 203 42.1 233 55.9 263 71.3 293 89 323 108.2 35	182	159	25.7	179	32.7	209	44.7	239	58.9	269	74.7	299	92.8	329	112.4	359	134.3	389	158.1	419	183.4
188 156 24.7 176 31.6 206 43.3 236 57.4 266 73 296 90.9 326 110.3 356 132 386 155.6 416 180.3 190 155 24.4 175 31.2 205 42.9 235 56.9 265 72.4 295 90.2 325 109.6 355 131.2 385 154.8 415 179.8 192 154 24.0 174 30.9 204 42.5 234 56.4 264 71.9 294 89.6 324 108.9 354 130.5 384 153.9 414 178.9 194 153 23.7 173 30.5 203 42.1 233 55.9 263 71.3 293 89 323 108.2 353 129.7 383 153.1 413 178.2 196 152 23.4 172 30.1 202 41.6 232 55.4 262 70.7 292 88.4 322 107.5	184	158	25.3	178	32.3	208	44.2	238	58.4	268	74.1	298	92.1	328	111.7	358	133.5	388	157.3	418	182.5
190 155 24.4 175 31.2 205 42.9 235 56.9 265 72.4 295 90.2 325 109.6 355 131.2 385 154.8 415 179.8 192 154 24.0 174 30.9 204 42.5 234 56.4 264 71.9 294 89.6 324 108.9 354 130.5 384 153.9 414 178.9 194 153 23.7 173 30.5 203 42.1 233 55.9 263 71.3 293 89 323 108.2 353 129.7 383 153.1 413 178.9 196 152 23.4 172 30.1 202 41.6 232 55.4 262 70.7 292 88.4 322 107.5 352 128.9 382 152.3 412 177.2 198 151 23.1 171 29.8 201 41.2 231 54.9 261 70.2 291 87.7 321 106.8	186	157	25.0	177	32.0	207	43.8	237	57.9	267	73.6	297	91.5	327	111	357	132.7	387	156.4	417	181.6
192 154 24.0 174 30.9 204 42.5 234 56.4 264 71.9 294 89.6 324 108.9 354 130.5 384 153.9 414 178.9 194 153 23.7 173 30.5 203 42.1 233 55.9 263 71.3 293 89 323 108.2 353 129.7 383 153.1 413 178.9 196 152 23.4 172 30.1 202 41.6 232 55.4 262 70.7 292 88.4 322 107.5 352 128.9 382 152.3 412 177.2 198 151 23.1 171 29.8 201 41.2 231 54.9 261 70.2 291 87.7 321 106.8 351 128.2 381 151.5 411 176.3	188	156	24.7	176	31.6	206	43.3	236	57.4	266	73	296	90.9	326	110.3	356	132	386	155.6	416	180.7
194 153 23.7 173 30.5 203 42.1 233 55.9 263 71.3 293 89 323 108.2 353 129.7 383 153.1 413 178.7 196 152 23.4 172 30.1 202 41.6 232 55.4 262 70.7 292 88.4 322 107.5 352 128.9 382 152.3 412 177.2 198 151 23.1 171 29.8 201 41.2 231 54.9 261 70.2 291 87.7 321 106.8 351 128.2 381 151.5 411 176.3	190	155	24.4	175	31.2	205	42.9	235	56.9	265	72.4	295	90.2	325	109.6	355	131.2	385	154.8	415	179.8
196 152 23.4 172 30.1 202 41.6 232 55.4 262 70.7 292 88.4 322 107.5 352 128.9 382 152.3 412 177.2 198 151 23.1 171 29.8 201 41.2 231 54.9 261 70.2 291 87.7 321 106.8 351 128.2 381 151.5 411 176.3	192	154	24.0	174	30.9	204	42.5	234	56.4	264	71.9	294	89.6	324	108.9	354	130.5	384	153.9	414	178.9
198 151 23.1 171 29.8 201 41.2 231 54.9 261 70.2 291 87.7 321 106.8 351 128.2 381 151.5 411 176.3	194	153	23.7	173	30.5	203	42.1	233	55.9	263	71.3	293	89	323	108.2	353	129.7	383	153.1	413	178.1
	196	152	23.4	172	30.1	202	41.6	232	55.4	262	70.7	292	88.4	322	107.5	352	128.9	382	152.3	412	177.2
200 150 22.8 170 29.4 200 40.8 230 54.4 260 69.6 290 87.1 320 106.1 350 127.4 380 150.7 410 175.4	198	151	23.1	171	29.8	201	41.2	231	54.9	261	70.2	291	87.7	321	106.8	351	128.2	381	151.5	411	176.3
	200	150	22.8	170	29.4	200	40.8	230	54.4	260	69.6	290	87.1	320	106.1	350	127.4	380	150.7	410	175.4

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 141 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

 $\mathbf{k}_{H,1}$ for Joist Hanger GSE-AL and GSI-AL - Partial nailing - F1

Part	K _{H,1} TOI			_						1				0.40	A !	000		000	A !	400	0.41
Mathematical Notation		500	-AL	540	J-AL	600	J-AL	660	-AL	/20)-AL	780	-AL	840	-AL	900	-AL	960	-AL	102	U-AL
Math																					
136			6		_	18	10	_	10				14		16	32	16		18		20
138 181 204 201 242 231 31.5 261 40.3 291 49.4 321 59.2 351 70.2 381 82.8 411 95.7 441 109.8 142 179 20.0 199 23.7 229 31.5 258 39.7 289 48.7 319 58.4 349 69.4 378 81.9 49.8 40.8 418 69.8 37.8 81.9 49.8 10.8 48.6 69.8 38.6 69.8 38.8 48.8 41.8 41.8 41.8 41.7 41.8 41.7 41.9 9.9 23.2 22.8 31.0 258 39.1 28.8 48.4 41.8 41.6 48.2 41.1 40.8 41.8	Α	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}						
140 180 20.2 200 23.9 230 31.2 260 40 290 489 320 58.8 350 69.8 380 82.4 410 95.2 440 108.9 1442 179 20.0 199 23.7 229 31.5 259 39.7 288 48.4 318 58.1 348 69 378 81.5 409 94.6 439 108.4 310 20.0 10.6 10.0 10.6 10.0 20.2 28.8 286 47.7 57.7 57.7 436 68.2 376 80.7 40.9 92.2 40.0 10.4 10.6 10.2 10.4 10.6 10.2 10.4 10.6 10.2 10.6 10.2 10.4 10.6 10.2 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 <td>136</td> <td>182</td> <td>20.6</td> <td>202</td> <td>24.4</td> <td>232</td> <td>31.7</td> <td>262</td> <td>40.6</td> <td>292</td> <td>49.7</td> <td>322</td> <td>59.5</td> <td>352</td> <td>70.6</td> <td>382</td> <td>83.2</td> <td>412</td> <td>96.1</td> <td>442</td> <td>109.9</td>	136	182	20.6	202	24.4	232	31.7	262	40.6	292	49.7	322	59.5	352	70.6	382	83.2	412	96.1	442	109.9
142 179 20.0 199 23.7 229 31.5 259 39.7 289 48.7 319 58.4 349 69.4 379 81.9 409 94.6 439 108.4 144 178 19.6 197 23.3 228 31.3 258 39.4 288 48.6 31.5 57.7 347 66.6 377 81.1 407 93.7 437 107.4 148 176 19.1 195 22.8 22.6 30.5 256 38.5 286 47.4 316 57.4 36.6 32.7 37.0 406 92.7 436 106.8 150 175 19.1 189 194 22.6 224 30.3 254 38.2 284 47.4 314 56.6 68.2 37.6 30.2 406 92.7 435 106.8 40.2 40.9 94.9 105.9 105.9 105.9 106.2 107.9	138	181	20.4	201	24.2	231	31.5	261	40.3	291	49.4	321	59.2	351	70.2	381	82.8	411	95.7	441	109.4
1444 178 19.8 19.8 23.5 228 31.3 258 39.4 288 48.4 31.5 58.1 34.8 69 378 81.5 408 94.1 43.9 107.9 146 177 19.6 197 23.3 227 31.0 257 39.1 287 48 31.7 57.7 347 68.6 377 81.1 407 93.7 437 107.4 150 175 19.1 195 22.8 22.8 32.5 255 38.8 286 47.7 31.6 57.4 346 68.2 376 80.4 49.2 20.2 435 106.4 154 173 18.7 193 22.4 223 30.0 253 37.9 283 46.7 31.5 56.3 34.6 67.3 37.7 40.2 49.3 105.4 105.4 105.4 105.4 105.4 105.4 105.4 105.5 34.1 66.6	140	180	20.2	200	23.9	230	31.2	260	40	290	49	320	58.8	350	69.8	380	82.4	410	95.2	440	108.9
146 177 19.6 197 23.3 227 31.0 257 39.1 287 48 317 57.7 347 68.6 377 407 406 93.2 436 106.9 150 175 19.1 195 22.8 225 35.5 255 38.5 285 47.4 316 57.7 345 68.2 376 80.2 406 93.2 436 106.9 150 174 18.9 194 22.6 224 30.3 254 38.2 284 47 314 56.6 344 67.4 374 402 40.0 91.8 40.1 105.4 156 172 18.5 192 22.2 2	142	179	20.0	199	23.7	229	31.5	259	39.7	289	48.7	319	58.4	349	69.4	379	81.9	409	94.6	439	108.4
148 176 19.3 196 23.0 226 30.8 256 38.8 286 47.7 316 57.4 346 68.2 376 80.7 406 93.2 436 106.9 150 175 19.1 195 22.8 225 30.5 255 38.5 286 47.4 315 67.8 376 80.2 405 92.7 435 106.4 152 174 18.9 194 22.6 224 30.0 253 37.9 283 46.7 313 56.3 342 66.6 372 79 402 91.4 432 105 155 171 18.3 191 21.2 221 29.2 250 37.2 280 45.7 310 55.5 340 66.8 370 78.1 400 90.5 300 104.5 160 170 18.1 190 21.7 220 29.2 250 37.2	144	178	19.8	198	23.5	228	31.3	258	39.4	288	48.4	318	58.1	348	69	378	81.5	408	94.1	438	107.9
150 175 19.1 195 22.8 225 30.5 255 38.5 285 47.4 315 57 345 67.8 375 80.2 405 92.7 435 106.4 152 174 18.9 194 22.6 224 30.3 254 38.2 284 47 314 66.6 344 67.4 379.4 403 91.8 433 105.4 156 172 18.5 192 22.2 222 29.7 252 37.6 282 46.7 313 56.3 342 66.6 372 79 402 91.4 432 105 158 171 18.3 191 21.2 22.0 29.5 37 280 45.7 310 55.2 340 66.8 37 78.1 400 90.9 431 104.5 160 167 17.5 187 219 29.0 249 36.5 330 <t< td=""><td>146</td><td>177</td><td>19.6</td><td>197</td><td>23.3</td><td>227</td><td>31.0</td><td>257</td><td>39.1</td><td>287</td><td>48</td><td>317</td><td>57.7</td><td>347</td><td>68.6</td><td>377</td><td>81.1</td><td>407</td><td>93.7</td><td>437</td><td>107.4</td></t<>	146	177	19.6	197	23.3	227	31.0	257	39.1	287	48	317	57.7	347	68.6	377	81.1	407	93.7	437	107.4
152 174 18.9 194 22.6 224 30.3 254 38.2 284 47 314 56.6 344 67.4 374 79.8 404 92.3 434 105.9 154 173 18.7 193 22.4 223 30.0 253 37.9 283 46.7 313 56.3 343 67 37.9 403 91.8 433 105.4 156 172 18.5 192 22.2 222 29.7 252 37.6 282 46.4 31.5 55.9 34.6 66.6 37.2 79 40.2 91.4 432 105 160 170 18.1 190 21.2 29.2 250 37.2 280 45.7 30.6 55.2 340 65.8 370 78.1 400 90.5 430 104 40.5 40.6 36.5 55.2 340 65.2 36.6 57.8 35.2 36.7 <td>148</td> <td>176</td> <td>19.3</td> <td>196</td> <td>23.0</td> <td>226</td> <td>30.8</td> <td>256</td> <td>38.8</td> <td>286</td> <td>47.7</td> <td>316</td> <td>57.4</td> <td>346</td> <td>68.2</td> <td>376</td> <td>80.7</td> <td>406</td> <td>93.2</td> <td>436</td> <td>106.9</td>	148	176	19.3	196	23.0	226	30.8	256	38.8	286	47.7	316	57.4	346	68.2	376	80.7	406	93.2	436	106.9
154 173 18.7 193 22.4 223 30.0 253 37.9 283 46.7 313 56.3 343 67 373 79.4 403 91.8 433 105.4 156 172 18.5 192 22.2 222 227 252 37.6 282 46.4 312 55.9 342 66.6 372 79 402 91.4 432 105 158 171 18.3 191 21.9 221 29.5 251 37.3 281 46 311 55.6 341 66.2 371 78.5 401 90.9 431 104.5 160 170 18.1 190 21.2 220 220 280 36.4 309 56.4 369 77.7 399 90 429 103.5 164 163 17.7 188 21.1 217 224 36.2 277 44.7 307 58	150	175	19.1	195	22.8	225	30.5	255	38.5	285	47.4	315	57	345	67.8	375	80.2	405	92.7	435	106.4
156 172 18.5 192 22.2 22.2 29.7 252 37.6 282 46.4 312 55.9 342 66.6 372 79 402 91.4 432 105 158 171 18.3 191 2.19 221 29.5 251 37.3 281 46 311 55.6 341 66.2 371 78.5 401 90.9 431 104.5 160 170 18.1 190 21.7 220 29.2 250 37 280 45.7 310 55.2 340 66.8 370 78.1 400 90.5 430 104 162 169 17.9 188 21.3 218 28.7 248 36.4 278 45.1 308 65.4 369 77.7 399 90 429 103.5 166 167 17.5 188 21.6 21.7 24.6 35.2 27.6 <t< td=""><td>152</td><td>174</td><td>18.9</td><td>194</td><td>22.6</td><td>224</td><td>30.3</td><td>254</td><td>38.2</td><td>284</td><td>47</td><td>314</td><td>56.6</td><td>344</td><td>67.4</td><td>374</td><td>79.8</td><td>404</td><td>92.3</td><td>434</td><td>105.9</td></t<>	152	174	18.9	194	22.6	224	30.3	254	38.2	284	47	314	56.6	344	67.4	374	79.8	404	92.3	434	105.9
158 171 18.3 191 21.9 221 29.5 251 37.3 281 46 311 55.5 341 66.2 371 78.5 401 90.9 431 104.5 160 170 18.1 190 21.7 220 29.2 250 37 280 45.7 310 55.2 340 65.8 370 78.1 400 90.5 430 104 162 169 17.9 189 21.5 219 29.0 249 36.7 279 45.4 309 54.9 339 65.4 369 77.7 399 90 429 103.5 166 167 17.5 187 21.1 21.7 28.5 247 36.2 277 44.7 307 54.2 337 64.7 367 399 89.1 427 102.5 168 166 17.3 186 20.8 216 28.2 246 <	154	173	18.7	193	22.4	223	30.0	253	37.9	283	46.7	313	56.3	343	67	373	79.4	403	91.8	433	105.4
160 170 18.1 190 21.7 220 29.2 250 37 280 45.7 310 55.2 340 65.8 370 78.1 400 90.5 430 104 162 169 17.9 189 21.5 219 29.0 249 36.7 279 45.4 309 54.9 339 65.4 369 77.7 399 90 429 103.5 164 168 17.7 188 21.1 217 28.5 247 36.2 277 44.7 307 54.2 336 65.7 368 76.9 397 89.1 427 102.5 168 166 17.3 186 20.8 216 28.2 246 35.9 276 44.4 306 53.8 336 64.3 366 76.4 396 88.2 425 102.5 170 165 17.1 188 20.4 27.4 24.3	156	172	18.5	192	22.2	222	29.7	252	37.6	282	46.4	312	55.9	342	66.6	372	79	402	91.4	432	105
162 169 17.9 189 21.5 219 29.0 249 36.7 279 45.4 309 54.9 339 66.4 369 77.7 399 90 429 103.5 164 168 17.7 188 21.3 218 28.7 248 36.4 278 45.1 308 54.5 338 66.1 368 77.3 398 89.6 428 103 166 167 17.5 187 21.1 217 28.5 247 36.2 277 44.7 307 54.2 337 64.7 367 76.9 397 89.1 427 102.5 168 166 17.3 186 20.6 215 28.0 245 35.6 275 44.1 305 53.5 335 63.9 366 76.3 395 88.2 425 101.6 170 164 16.9 182 20.2 213 27.5	158	171	18.3	191	21.9	221	29.5	251	37.3	281	46	311	55.6	341	66.2	371	78.5	401	90.9	431	104.5
164 168 17.7 188 21.3 218 28.7 248 36.4 278 45.1 308 54.5 338 65.1 368 77.3 398 89.6 428 103 166 167 17.5 187 21.1 217 28.5 247 36.2 277 44.7 307 54.2 337 64.7 367 76.9 397 89.1 427 102.5 168 166 17.3 186 20.8 216 28.2 246 35.9 276 44.4 306 53.5 335 63.9 366 76.6 395 82.2 101 170 165 16.9 184 20.4 214 27.7 244 35.3 274 43.8 304 53.1 336 63.9 366 75.6 394 87.8 424 101 174 163 16.1 16.9 183 20.2 212 27.2	160	170	18.1	190	21.7	220	29.2	250	37	280	45.7	310	55.2	340	65.8	370	78.1	400	90.5	430	104
166 167 17.5 187 21.1 217 28.5 247 36.2 277 44.7 307 54.2 337 64.7 367 76.9 397 89.1 427 102.5 168 166 17.3 186 20.8 216 28.2 246 35.9 276 44.4 306 53.8 366 76.4 396 88.7 426 102 170 165 17.1 185 20.6 215 28.0 245 35.6 275 44.1 305 53.5 335 63.9 365 76 395 88.2 425 101.6 172 164 16.9 184 20.4 214 27.7 244 35.3 274 43.8 304 53.1 334 63.5 364 75.6 394 87.4 243 101.6 174 163 16.1 18.9 20.2 21.2 24.2 34.7 27.2	162	169	17.9	189	21.5	219	29.0	249	36.7	279	45.4	309	54.9	339	65.4	369	77.7	399	90	429	103.5
168 166 17.3 186 20.8 216 28.2 246 35.9 276 44.4 306 53.8 336 64.3 366 76.4 396 88.7 426 102 170 165 17.1 185 20.6 215 28.0 245 35.6 275 44.1 305 53.5 335 63.9 365 76 395 88.2 425 101.6 172 164 16.9 184 20.4 214 27.7 244 35.3 274 43.8 304 53.1 334 63.5 364 75.6 394 87.8 424 101.1 174 163 16.7 183 20.2 212 27.2 242 34.7 272 43.1 302 52.4 332 62.7 362 74.8 392 86.9 422 100.1 178 161 16.3 181 19.8 210 26.7	164	168	17.7	188	21.3	218	28.7	248	36.4	278	45.1	308	54.5	338	65.1	368	77.3	398	89.6	428	103
170 165 17.1 185 20.6 215 28.0 245 35.6 275 44.1 305 53.5 335 63.9 365 76 395 88.2 425 101.6 172 164 16.9 184 20.4 214 27.7 244 35.3 274 43.8 304 53.1 334 63.5 364 75.6 394 87.8 424 101.1 174 163 16.7 183 20.2 213 27.5 243 35 273 43.4 303 52.8 333 63.1 363 75.2 393 87.4 423 100.6 176 162 16.5 182 20.0 212 27.2 242 34.7 272 43.1 302 52.4 332 62.7 362 74.8 392 86.9 422 100.1 178 161 16.0 18.9 210 26.7 240	166	167	17.5	187	21.1	217	28.5	247	36.2	277	44.7	307	54.2	337	64.7	367	76.9	397	89.1	427	102.5
172 164 16.9 184 20.4 214 27.7 244 35.3 274 43.8 304 53.1 334 63.5 364 75.6 394 87.8 424 101.1 174 163 16.7 183 20.2 213 27.5 243 35 273 43.4 303 52.8 333 63.1 363 75.2 393 87.4 423 100.6 176 162 16.5 182 20.0 212 27.2 242 34.7 272 43.1 302 52.4 332 62.7 362 74.8 392 86.9 422 100.1 178 161 16.3 181 19.8 211 27.0 241 34.4 271 42.8 301 52.1 331 62.4 361 74.3 391 86.5 421 99.7 180 160 16.1 180 19.5 210 26.5 239 33.9 269 42.2 299 51.4 329 61.6 359	168	166	17.3	186	20.8	216	28.2	246	35.9	276	44.4	306	53.8	336	64.3	366	76.4	396	88.7	426	102
174 163 16.7 183 20.2 213 27.5 243 35 273 43.4 303 52.8 333 63.1 363 75.2 393 87.4 423 100.6 176 162 16.5 182 20.0 212 27.2 242 34.7 272 43.1 302 52.4 332 62.7 362 74.8 392 86.9 422 100.1 178 161 16.3 181 19.8 211 27.0 241 34.4 271 42.8 301 52.1 331 62.4 361 74.3 391 86.5 421 99.7 180 160 16.1 180 19.5 210 26.7 240 34.1 270 42.5 300 51.7 330 62 360 73.9 390 86 420 99.2 182 159 15.9 179 19.3 209 26.5 239 33.9 269 42.2 299 51.4 329 61.6 359	170	165	17.1	185	20.6	215	28.0	245	35.6	275	44.1	305	53.5	335	63.9	365	76	395	88.2	425	101.6
176 162 16.5 182 20.0 212 27.2 242 34.7 272 43.1 302 52.4 332 62.7 362 74.8 392 86.9 422 100.1 178 161 16.3 181 19.8 211 27.0 241 34.4 271 42.8 301 52.1 331 62.4 361 74.3 391 86.5 421 99.7 180 160 16.1 180 19.5 210 26.7 240 34.1 270 42.5 300 51.7 330 62 360 73.9 390 86 420 99.2 182 159 15.9 179 19.3 209 26.5 239 33.9 269 42.2 299 51.4 329 61.6 359 73.5 389 85.6 419 98.7 184 158 15.7 178 19.1 208 26.2 238 33.6 268 41.8 298 51 328 61.2 358 <	172	164	16.9	184	20.4	214	27.7	244	35.3	274	43.8	304	53.1	334	63.5	364	75.6	394	87.8	424	101.1
178 161 16.3 181 19.8 211 27.0 241 34.4 271 42.8 301 52.1 331 62.4 361 74.3 391 86.5 421 99.7 180 160 16.1 180 19.5 210 26.7 240 34.1 270 42.5 300 51.7 330 62 360 73.9 390 86 420 99.2 182 159 15.9 179 19.3 209 26.5 238 33.6 268 41.8 298 51 328 61.2 358 73.1 388 85.6 419 98.7 184 158 15.7 178 19.1 208 26.2 238 33.6 268 41.8 298 51 328 61.2 358 73.1 388 85.1 418 98.2 186 157 15.5 177 18.9 207 26.0 237 33.3 266 41.2 296 50.3 326 60.5 356	174	163	16.7	183	20.2	213	27.5	243	35	273	43.4	303	52.8	333	63.1	363	75.2	393	87.4	423	100.6
180 160 16.1 180 19.5 210 26.7 240 34.1 270 42.5 300 51.7 330 62 360 73.9 390 86 420 99.2 182 159 15.9 179 19.3 209 26.5 239 33.9 269 42.2 299 51.4 329 61.6 359 73.5 389 85.6 419 98.7 184 158 15.7 178 19.1 208 26.2 238 33.6 268 41.8 298 51 328 61.2 358 73.1 388 85.1 418 98.2 186 15.7 15.5 177 18.9 207 26.0 237 33.3 267 41.5 297 50.7 327 60.8 357 72.7 387 84.7 417 97.8 188 156 15.3 176 18.7 206 25.7 236 33 266 41.2 296 50.3 325 60.1 355 <td< td=""><td>176</td><td>162</td><td>16.5</td><td>182</td><td>20.0</td><td>212</td><td>27.2</td><td>242</td><td>34.7</td><td>272</td><td>43.1</td><td>302</td><td>52.4</td><td>332</td><td>62.7</td><td>362</td><td>74.8</td><td>392</td><td>86.9</td><td>422</td><td>100.1</td></td<>	176	162	16.5	182	20.0	212	27.2	242	34.7	272	43.1	302	52.4	332	62.7	362	74.8	392	86.9	422	100.1
182 159 15.9 179 19.3 209 26.5 239 33.9 269 42.2 299 51.4 329 61.6 359 73.5 389 85.6 419 98.7 184 158 15.7 178 19.1 208 26.2 238 33.6 268 41.8 298 51 328 61.2 358 73.1 388 85.1 418 98.2 186 157 15.5 177 18.9 207 26.0 237 33.3 267 41.5 297 50.7 327 60.8 357 72.7 387 84.7 417 97.8 188 156 15.3 176 18.7 206 25.7 236 33 266 41.2 296 50.3 326 60.5 356 72.3 386 84.3 416 97.3 190 155 15.1 175 18.5 205 25.5 235 32.7 265 40.9 295 50 325 60.1 355 <t< td=""><td>178</td><td>161</td><td>16.3</td><td>181</td><td>19.8</td><td>211</td><td>27.0</td><td>241</td><td>34.4</td><td>271</td><td>42.8</td><td>301</td><td>52.1</td><td>331</td><td>62.4</td><td>361</td><td>74.3</td><td>391</td><td>86.5</td><td>421</td><td>99.7</td></t<>	178	161	16.3	181	19.8	211	27.0	241	34.4	271	42.8	301	52.1	331	62.4	361	74.3	391	86.5	421	99.7
184 158 15.7 178 19.1 208 26.2 238 33.6 268 41.8 298 51 328 61.2 358 73.1 388 85.1 418 98.2 186 157 15.5 177 18.9 207 26.0 237 33.3 267 41.5 297 50.7 327 60.8 357 72.7 387 84.7 417 97.8 188 156 15.3 176 18.7 206 25.7 236 33 266 41.2 296 50.3 326 60.5 356 72.3 386 84.3 416 97.3 190 155 15.1 175 18.5 205 25.5 235 32.7 265 40.9 295 50 325 60.1 355 71.9 385 83.8 415 96.8 192 154 14.9 174 18.3 204 25.2 234 32.4 264 40.6 294 49.7 324 59.7 354 <t< td=""><td>180</td><td>160</td><td>16.1</td><td>180</td><td>19.5</td><td>210</td><td>26.7</td><td>240</td><td>34.1</td><td>270</td><td>42.5</td><td>300</td><td>51.7</td><td>330</td><td>62</td><td>360</td><td>73.9</td><td>390</td><td>86</td><td>420</td><td>99.2</td></t<>	180	160	16.1	180	19.5	210	26.7	240	34.1	270	42.5	300	51.7	330	62	360	73.9	390	86	420	99.2
186 157 15.5 177 18.9 207 26.0 237 33.3 267 41.5 297 50.7 327 60.8 357 72.7 387 84.7 417 97.8 188 156 15.3 176 18.7 206 25.7 236 33 266 41.2 296 50.3 326 60.5 356 72.3 386 84.3 416 97.3 190 155 15.1 175 18.5 205 25.5 235 32.7 265 40.9 295 50 325 60.1 355 71.9 385 83.8 415 96.8 192 154 14.9 174 18.3 204 25.2 234 32.4 264 40.6 294 49.7 324 59.7 354 71.5 384 83.4 414 96.3 194 153 14.8 173 18.1 203 25.0 233 32.2 263 40.3 293 49.3 323 59.3 352	182	159	15.9	179	19.3	209	26.5	239	33.9	269	42.2	299	51.4	329	61.6	359	73.5	389	85.6	419	98.7
188 156 15.3 176 18.7 206 25.7 236 33 266 41.2 296 50.3 326 60.5 356 72.3 386 84.3 416 97.3 190 155 15.1 175 18.5 205 25.5 235 32.7 265 40.9 295 50 325 60.1 355 71.9 385 83.8 415 96.8 192 154 14.9 174 18.3 204 25.2 234 32.4 264 40.6 294 49.7 324 59.7 354 71.5 384 83.4 414 96.3 194 153 14.8 173 18.1 203 25.0 233 32.2 263 40.3 293 49.3 323 59.3 353 71.1 383 83 413 95.9 196 152 14.6 172 17.8 202 24.8 232 31.9 262 40 292 49 322 59 352 70.7	184	158	15.7	178	19.1	208	26.2	238	33.6	268	41.8	298	51	328	61.2	358	73.1	388	85.1	418	98.2
190 155 15.1 175 18.5 205 25.5 235 32.7 265 40.9 295 50 325 60.1 355 71.9 385 83.8 415 96.8 192 154 14.9 174 18.3 204 25.2 234 32.4 264 40.6 294 49.7 324 59.7 354 71.5 384 83.4 414 96.3 194 153 14.8 173 18.1 203 25.0 233 32.2 263 40.3 293 49.3 323 59.3 353 71.1 383 83 413 95.9 196 152 14.6 172 17.8 202 24.8 232 31.9 262 40 292 49 322 59 352 70.7 382 82.5 412 95.4 198 151 14.4 171 17.6 201 24.5 231 31.6 261 39.6 291 48.6 321 58.6 351 70	186	157	15.5	177	18.9	207	26.0	237	33.3	267	41.5	297	50.7	327	60.8	357	72.7	387	84.7	417	97.8
192 154 14.9 174 18.3 204 25.2 234 32.4 264 40.6 294 49.7 324 59.7 354 71.5 384 83.4 414 96.3 194 153 14.8 173 18.1 203 25.0 233 32.2 263 40.3 293 49.3 323 59.3 353 71.1 383 83 413 95.9 196 152 14.6 172 17.8 202 24.8 232 31.9 262 40 292 49 322 59 352 70.7 382 82.5 412 95.4 198 151 14.4 171 17.6 201 24.5 231 31.6 261 39.6 291 48.6 321 58.6 351 70.2 381 82.1 411 94.9	188	156	15.3	176	18.7	206	25.7	236	33	266	41.2	296	50.3	326	60.5	356	72.3	386	84.3	416	97.3
194 153 14.8 173 18.1 203 25.0 233 32.2 263 40.3 293 49.3 323 59.3 353 71.1 383 83 413 95.9 196 152 14.6 172 17.8 202 24.8 232 31.9 262 40 292 49 322 59 352 70.7 382 82.5 412 95.4 198 151 14.4 171 17.6 201 24.5 231 31.6 261 39.6 291 48.6 321 58.6 351 70.2 381 82.1 411 94.9	190	155	15.1	175	18.5	205	25.5	235	32.7	265	40.9	295	50	325	60.1	355	71.9	385	83.8	415	96.8
196 152 14.6 172 17.8 202 24.8 232 31.9 262 40 292 49 322 59 352 70.7 382 82.5 412 95.4 198 151 14.4 171 17.6 201 24.5 231 31.6 261 39.6 291 48.6 321 58.6 351 70.2 381 82.1 411 94.9	192	154	14.9	174	18.3	204	25.2	234	32.4	264	40.6	294	49.7	324	59.7	354	71.5	384	83.4	414	96.3
198 151 14.4 171 17.6 201 24.5 231 31.6 261 39.6 291 48.6 321 58.6 351 70.2 381 82.1 411 94.9	194	153	14.8	173	18.1	203	25.0	233	32.2	263	40.3	293	49.3	323	59.3	353	71.1	383	83	413	95.9
	196	152	14.6	172	17.8	202	24.8	232	31.9	262	40	292	49	322	59	352	70.7	382	82.5	412	95.4
200 150 14.2 170 17.4 200 24.3 230 31.3 260 39.3 290 48.3 320 58.2 350 69.8 380 81.7 410 94.5	198	151	14.4	171	17.6	201	24.5	231	31.6	261	39.6	291	48.6	321	58.6	351	70.2	381	82.1	411	94.9
	200	150	14.2	170	17.4	200	24.3	230	31.3	260	39.3	290	48.3	320	58.2	350	69.8	380	81.7	410	94.5

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 142 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

 $k_{\text{H,2}}$ for GSE-AL and GSI-AL - Full or partial nailing - F2

		nber of nails		k _{H2}
Blank	in the	header		
	Full nailing	Partial nailing	Full nailing	Partial nailing
500	22	12	16	9.0
540	26	14	21.6	12.0
600	32	18	31.7	19.2
660	38	20	43.6	23.4
720	44	24	57.5	33.2
780	50	26	73.3	38.8
840	56	30	91	51.1
900	62	32	110.6	57.9
960	68	34	132.1	72.8
1020	74	38	155.6	80.9

Page 143 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Characteristic capacity for GSE-AL/2.5 - with connector screw SSH/SSF

			Produ	ct capac	ities - Tii	mber to T	imber - L	arge cor	nector s	crew		
		Fastener	S			С	haracteri	stic capa	cities - T	imber C2	24	
References		Header	J	oist		R	1.k			R	2.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GSE500AL	2	SSH12.0x60 ⁽¹⁾	12	CNA*	12,3	12,4	12,5	12,5	12,2	12,4	12,5	12,5
GSE540AL	4	SSH12.0x60 ⁽¹⁾	14	CNA*	19,7	20,4	21,4	21,7	19,4	20,2	21,3	21,6
GSE600AL	4	SSH12.0x60 ⁽¹⁾	18	CNA*	23,0	23,3	23,4	23,4	22,8	23,3	23,4	23,4
GSE660AL	4	SSH12.0x60 ⁽¹⁾	20	CNA*	23,4	23,4	23,4	23,4	23,4	23,4	23,4	23,4
GSE720AL	6	SSH12.0x60 ⁽¹⁾	24	CNA*	34,1	35,0	35,3	35,3	34,1	35,0	35,3	35,3
GSE780AL	6	SSH12.0x60 ⁽¹⁾	26	CNA*	35,5	35,9	35,9	35,9	35,5	35,9	35,9	35,9
GSE840AL	6	SSH12.0x60 ⁽¹⁾	30	CNA*	36,1	36,1	36,1	36,1	36,1	36,1	36,1	36,1
GSE900AL	6	SSH12.0x60 ⁽¹⁾	32	CNA*	35,0	35,0	35,0	35,0	35,0	35,0	35,0	35,0
GSE960AL	6	SSH12.0x60 ⁽¹⁾	34	CNA*	36,4	36,4	36,4	36,4	36,4	36,4	36,4	36,4
GSE1020AL	6	SSH12.0x60 ⁽¹⁾	38	CNA*	36,6	36,6	36,6	36,6	36,6	36,6	36,6	36,6

⁽¹⁾SSH can be replaced by SSF

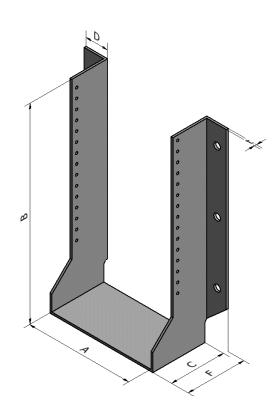
			Produ	ct capac	ities - Ti	mber to T	imber - L	arge cor	nector s	crew		
		Fastener	S			С	haracteri	stic capa	cities - T	imber C2	24	
References		Header	J	oist		R	3.k			R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
GSE500AL	2	SSH12.0x60 ⁽¹⁾	12	CNA*	4,6	4,6	4,6	4,6	5,0	5,0	5,0	5,0
GSE540AL	4	SSH12.0x60 ⁽¹⁾	14	CNA*	7,4	8,5	8,5	8,5	10,0	10,0	10,0	10,0
GSE600AL	4	SSH12.0x60 ⁽¹⁾	18	CNA*	8,0	8,0	8,0	8,0	10,0	10,0	10,0	10,0
GSE660AL	4	SSH12.0x60 ⁽¹⁾	20	CNA*	6,8	6,8	6,8	6,8	10,0	10,0	10,0	10,0
GSE720AL	6	SSH12.0x60 ⁽¹⁾	24	CNA*	9,4	9,4	9,4	9,4	15,0	15,0	15,0	15,0
GSE780AL	6	SSH12.0x60 ⁽¹⁾	26	CNA*	9,0	9,0	9,0	9,0	15,0	15,0	15,0	15,0
GSE840AL	6	SSH12.0x60 ⁽¹⁾	30	CNA*	8,5	8,5	8,5	8,5	15,0	15,0	15,0	15,0
GSE900AL	6	SSH12.0x60 ⁽¹⁾	32	CNA*	6,6	6,6	6,6	6,6	15,0	15,0	15,0	15,0
GSE960AI	6	SSH12.0x60 ⁽¹⁾	34	CNA*	7,7	7,7	7,7	7,7	15,0	15,0	15,0	15,0
GSE1020AL	6	SSH12.0x60 ⁽¹⁾	38	CNA*	7,3	7,3	7,3	7,3	15,0	15,0	15,0	15,0

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber, which is not included in these capacities.

GSE-AL fire resistance R30 to EN 13501-2

See GSE Joist hanger

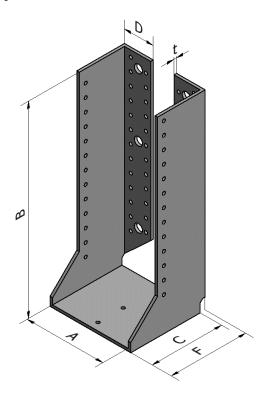

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

D22 GSEXL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names				
GSEXL	Steel ref 1 - Steel ref 2	-				

Dimensions

Blank	Dimensions [mm]						Holes			
	Dimensions [mm]					Header		Joist		
	Α	В	С	D	F	t	Qty	Size	Qty	Size
720	201-270	(720 - A)/2	110	42.5	118	4	4	Ø14	16	Ø5
1020	201-270	(1020 - A)/2	110	42.5	118	4	6	Ø14	30	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-


Characteristic capacity for GSEXL - Full nailing - F1 F2 F3 F4 - timber to rigid support

See formulas from $\underline{\mathsf{Annex}\;\mathsf{C}}$ for characteristic values calculation.

D23 GSI Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GSI	Steel ref 1 - Steel ref 2	-

Dimensio	Dimensions [mm]								H	loles		
Blank		Dimer	isions [mmj				Hea	der		Jo	ist
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
300/2.5X	76-110	(300-A)/2	110	42.5	115	2.5	12	Ø5	2	Ø13	6	Ø5
340/2.5X	76-110	(340-A)/2	110	42.5	115	2.5	16	Ø5	2	Ø13	8	Ø5
380/2.5X	76-136	(380-A)/2	110	42.5	115	2.5	16	Ø5	4	Ø13	8	Ø5
440/2.5X	76-136	(440-A)/2	110	42.5	115	2.5	22	Ø5	4	Ø13	12	Ø5
500/2.5X	76-136	(500-A)/2	110	42.5	115	2.5	28	Ø5	4	Ø13	14	Ø5
540/2.5X	76-136	(540-A)/2	110	42.5	115	2.5	32	Ø5	4	Ø13	16	Ø5
600/2.5X	76-136	(600-A)/2	110	42.5	115	2.5	38	Ø5	4	Ø13	20	Ø5
660/2.5X	76-136	(660-A)/2	110	42.5	115	2.5	44	Ø5	6	Ø13	22	Ø5
720/2.5X	76-136	(720-A)/2	110	42.5	115	2.5	50	Ø5	6	Ø13	26	Ø5
780/2.5X	76-136	(780-A)/2	110	42.5	115	2.5	56	Ø5	6	Ø13	28	Ø5
840/2.5X	76-136	(840-A)/2	110	42.5	115	2.5	62	Ø5	6	Ø13	32	Ø5
900/2.5X	76-136	(900-A)/2	110	42.5	115	2.5	68	Ø5	6	Ø13	38	Ø5
960/2.5X	76-136	(960-A)/2	110	42.5	115	2.5	74	Ø5	6	Ø13	38	Ø5
1020/2.5X	76-136	(1020-A)/2	110	42.5	115	2.5	80	Ø5	6	Ø13	40	Ø5
300/4X	76-110	(300-A)/2	110	45.5	118	4	12	Ø5	2	Ø13	6	Ø5
340/4X	76-110	(340-A)/2	110	45.5	118	4	16	Ø5	2	Ø13	8	Ø5
380/4X	76-136	(380-A)/2	110	45.5	118	4	16	Ø5	4	Ø13	8	Ø5
440/4X	76-136	(440-A)/2	110	45.5	118	4	22	Ø5	4	Ø13	12	Ø5
500/4X	76-136	(500-A)/2	110	45.5	118	4	28	Ø5	4	Ø13	14	Ø5
540/4X	76-136	(540-A)/2	110	45.5	118	4	32	Ø5	4	Ø13	16	Ø5
600/4X	76-136	(600-A)/2	110	45.5	118	4	38	Ø5	4	Ø13	20	Ø5
660/4X	76-136	(660-A)/2	110	45.5	118	4	44	Ø5	6	Ø13	22	Ø5
720/4X	76-136	(720-A)/2	110	45.5	118	4	50	Ø5	6	Ø13	26	Ø5
780/4X	76-136	(780-A)/2	110	45.5	118	4	56	Ø5	6	Ø13	28	Ø5
840/4X	76-136	(840-A)/2	110	45.5	118	4	62	Ø5	6	Ø13	32	Ø5
900/4X	76-136	(900-A)/2	110	45.5	118	4	68	Ø5	6	Ø13	38	Ø5
960/4X	76-136	(960-A)/2	110	45.5	118	4	74	Ø5	6	Ø13	38	Ø5
1020/4X	76-136	(1020-A)/2	110	45.5	118	4	80	Ø5	6	Ø13	40	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger GSI/2.5X and GSI/4X - Full nailing - F1

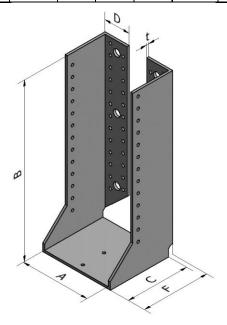
See GSE Joist hanger

 $k_{\text{H},1}$ for Joist Hanger GSI/2.5X and GSI/4X - Partial nailing - F1

See GSE Joist hanger

 $k_{\text{H},2}$ for GSI - Full or partial nailing - F2

See GSE Joist hanger


GSI fire resistance R30 to EN 13501-2

See GSE Joist hanger

D24 GSI-AL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
GSI-AL	Steel ref 1 - Steel ref 2	-

Dimensions									F	loles		
Blank		Dimens	ions [n	nm]			Header				Joist	
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
500/2.5X-AL	137-200	(500-A)/2	110	42.5	115	2.5	22	Ø5	2	Ø13	12	Ø5
540/2.5X-AL	137-200	(540-A)/2	110	42.5	115	2.5	26	Ø5	4	Ø13	14	Ø5
600/2.5X-AL	137-200	(600-A)/2	110	42.5	115	2.5	32	Ø5	4	Ø13	18	Ø5
660/2.5X-AL	137-200	(660-A)/2	110	42.5	115	2.5	38	Ø5	4	Ø13	20	Ø5
720/2.5X-AL	137-200	(720-A)/2	110	42.5	115	2.5	44	Ø5	6	Ø13	24	Ø5
780/2.5X-AL	137-200	(780-A)/2	110	42.5	115	2.5	50	Ø5	6	Ø13	26	Ø5
840/2.5X-AL	137-200	(840-A)/2	110	42.5	115	2.5	56	Ø5	6	Ø13	30	Ø5
900/2.5X-AL	137-200	(900-A)/2	110	42.5	115	2.5	62	Ø5	6	Ø13	32	Ø5
960/2.5X-AL	137-200	(960-A)/2	110	42.5	115	2.5	66	Ø5	6	Ø13	34	Ø5
1020/2.5X-AL	137-200	(1020-A)/2	110	42.5	115	2.5	74	Ø5	6	Ø13	38	Ø5
500/4X-AL	137-200	(500-A)/2	110	45.5	118	4	22	Ø5	2	Ø13	12	Ø5
540/4X-AL	137-200	(540-A)/2	110	45.5	118	4	26	Ø5	4	Ø13	14	Ø5
600/4X-AL	137-200	(600-A)/2	110	45.5	118	4	32	Ø5	4	Ø13	18	Ø5
660/4X-AL	137-200	(660-A)/2	110	45.5	118	4	38	Ø5	4	Ø13	20	Ø5
720/4X-AL	137-200	(720-A)/2	110	45.5	118	4	44	Ø5	6	Ø13	24	Ø5
780/4X-AL	137-200	(780-A)/2	110	45.5	118	4	50	Ø5	6	Ø13	26	Ø5
840/4X-AL	137-200	(840-A)/2	110	45.5	118	4	56	Ø5	6	Ø13	30	Ø5
900/4X-AL	137-200	(900-A)/2	110	45.5	118	4	62	Ø5	6	Ø13	32	Ø5
960/4X-AL	137-200	(960-A)/2	110	45.5	118	4	66	Ø5	6	Ø13	34	Ø5
1020/4X-AL	137-200	(1020-A)/2	110	45.5	118	4	74	Ø5	6	Ø13	38	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-			-		-	1

Page 148 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07 Parameters have to be used with equation in $\underline{\mathsf{Annex}\ \mathsf{C}}$.

 $k_{H,1}$ for Joist Hanger GSI-AL - Full nailing - F1

See GSE-AL Joist hanger

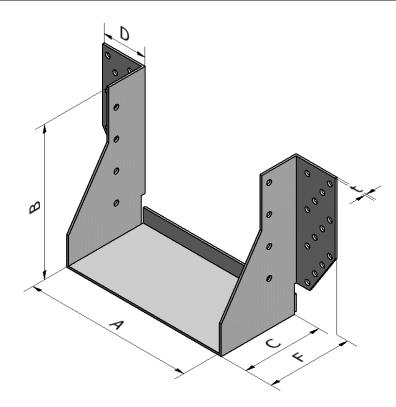
 $k_{\text{H,1}}$ for Joist Hanger GSI-AL - Partial nailing - F1

See GSE-AL Joist hanger

 $k_{H,2}$ for GSI-AL - Full or partial nailing - F2

See GSE-AL Joist hanger

GSI-AL fire resistance R30 to EN 13501-2


See GSE-AL Joist hanger

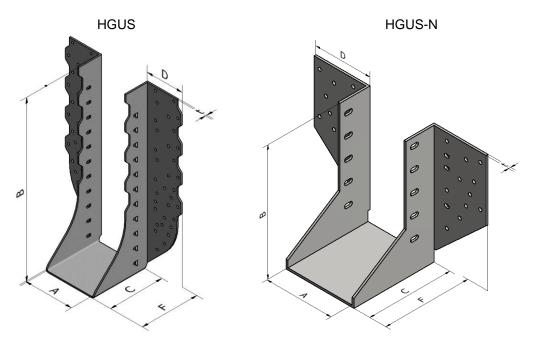
D25 HGUQ Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
HGUQ SCR	Steel ref 1 - Steel ref 2	-

Dimensions

Dimensions [mm]								Holes			
Blank		Dimensions [mm]						der	Jo	ist	
	Α	В	С	D	F	t	Qty	Size	Qty	Size	
HGUQ SCR	105-202	180	100	54.5	102.5	2.5	26	Ø6.4	8	Ø6.4	
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	

Characteristic capacity for HGUQ SCR - F1 and F2 - timber to timber


Model	Fastener 6.35		Characteristic capacity [kN] - TR26 / C27				
	n _H		R _{1,k}	R _{2,k}			
HGUQ SCR	26	8	45.5	20.7			

^{*} F_k determined according to BS 5268-2:2002

D26 HGUS Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
HGUS	Steel ref 1 - Steel ref 2	-

Dimensions		Dimensions [mm]							Holes		
Blank	Dimensions [mm]						Hea	der	Joist		
	Α	В	C	D	F	t	Qty	Size	Qty	Size	
HGUS48	92	180	100	66	106.5	2.5	36	Ø5	10	Ø5	
HGUS410	92	229	100	66	106.5	2.5	46	Ø5	16	Ø5	
HGUS412	92	265	100	66	106.5	2.5	56	Ø5	20	Ø5	
HGUS414	92	316	100	66	106.5	2.5	66	Ø5	22	Ø5	
HGUS180/135	135	180	100	66	106.5	2.5	36	Ø5	10	Ø5	
HGUS5.50/10	140	227	100	66	106.5	2.5	46	Ø5	16	Ø5	
HGUS5.50/12	140	265	100	66	106.5	2.5	56	Ø5	20	Ø5	
HGUS5.50/14	140	316	100	66	106.5	2.5	66	Ø5	22	Ø5	
HGUS7.25/10	184	219	100	66	106.5	2.5	46	Ø5	16	Ø5	
HGUS7.25/12	184	270	100	66	106.5	2.5	56	Ø5	20	Ø5	
HGUS7.25/14	184	320	100	66	106.5	2.5	66	Ø5	22	Ø5	
HGUS125/80	80	122	100	66	106.5	2.5	8	Ø5	16	Ø5	
HGUS145/80	80	145	100	66	106.5	2.5	10	Ø5	22	Ø5	
HGUS125/105	105	110	100	66	106.5	2.5	8	Ø5	16	Ø5	
HGUS145/105	105	145	100	66	106.5	2.5	10	Ø5	22	Ø5	
HGUS145/120	120	145	100	66	106.5	2.5	10	Ø5	22	Ø5	
HGUS145/155	155	145	100	66	106.5	2.5	10	Ø5	22	Ø5	
Spec HGUS48	90-300	180	100	66	106.5	2.5	36	Ø5	10	Ø5	
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	

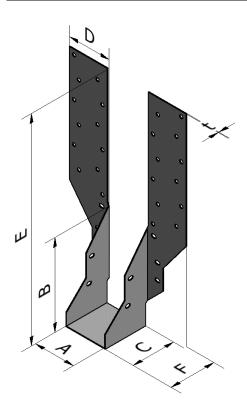
Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger HGUS - Full nailing - F1

Model	n _H	nJ	k _{H,1}
HGUS 48	36	10	25.1
HGUS 410	46	16	31.9
HGUS 412	56	20	41.4
HGUS 414	66	22	54.5
HGUS 180/35	36	10	24.8
HGUS 5.5/10	46	16	32.2
HGUS 5.5/12	56	20	41.7
HGUS 5.5/14	66	22	54.9
HGUS 7.25/10	46	16	33.3
HGUS 7.25/12	56	20	43.2
HGUS 7.25/14	66	11	54.7

k_{H,2} for HGUS - Full or partial nailing - F2

Blank	Total number of nails in the header	k _{H2}
	Full nailing	Full nailing
HGUS 48	36	53.35
HGUS 410	46	95.93
HGUS 412	56	145.59
HGUS 414	66	206.72
HGUS 180/35	36	47.7
HGUS 5.5/10	46	94.39
HGUS 5.5/12	56	145.59
HGUS 5.5/14	66	227.17
HGUS 7.25/10	46	96.1
HGUS 7.25/12	56	145.59
HGUS 7.25/14	66	206.72


Fk for Spec HGUS - F1

Model	A	В	Type of Fastener	Characteristic capacity
Spec HGUS48	90-184	180	4.0x100	as HGUS48
Spec HGUS48	185-200	180	Smooth	49
Spec HGUS48	201-246	180	Shank	46.5
Spec HGUS48	247-300	180	Nails	43.7

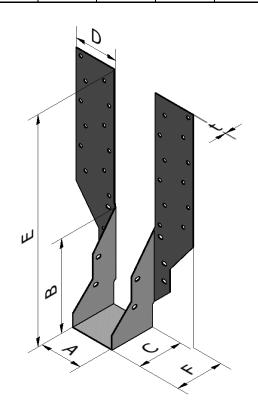
D27 JHA270 Straps hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
JHA270	Steel ref 1 - Steel ref 2	-

			Dim	onoiono [m.m.1				Но	les	
Blank			Dilli	ensions [mmj			Hea	der	Jo	ist
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size
JHA270/38	38	106	50	48.8	241	52.1	0.9	22	Ø4.1	4	Ø4x6
JHA270/44	44	103	50	48.8	238	52.1	0.9	22	Ø4.1	4	Ø4x6
JHA270/47	47	101.5	50	48.8	236.5	52.1	0.9	24	Ø4.1	4	Ø4x6
JHA270/50	50	100	50	48.8	235	52.1	0.9	24	Ø4.1	4	Ø4x6
JHA270/63	63	113.5	50	48.8	248.5	52.1	0.9	22	Ø4.1	4	Ø4x6
JHA270/75	75	107.5	50	48.8	242.5	52.1	0.9	22	Ø4.1	4	Ø4x6
JHA270/91	91	99.5	50	48.8	234	52.1	0.9	22	Ø4.1	4	Ø4x6
JHA270/100	100	95	50	48.8	230	52.1	0.9	22	Ø4.1	4	Ø4x6
Permitted deviation	-	-	±1.0	±1.0		±1.0	-	-	-	-	-

Parameters have to be used with equation in Annex C.

Parameters for JHA270 - F1 - timber to timber


Model	ı	l _{ef}	S	B _{eff}	a-0.5a _c	е	Chor	kef	d	neff (per flange) round wire
JHA270/38	47	96	28.5	80	112	28	10	1.2	1.1	5
JHA270/44	47	99	28.5	80	112	28	10	1.2	1.1	5
JHA270/47	47	100.5	28.5	80	112	28	10	1.2	1.1	5
JHA270/50	47	102	28.5	80	112	28	10	1.2	1.1	5
JHA270/63	47	107	28.5	76.75	112	28	10	1.2	1.1	5
JHA270/75	47	107	28.5	73.75	112	28	10	1.2	1.1	5
JHA270/91	47	107	28.5	69.75	112	28	10	1.2	1.1	5
JHA270/100	47	107	28.5	67.5	112	28	10	1.2	1.1	5

			rting Timber steners	Supported Timber Fasteners		
Hanger	Installation	3.75	5 x 30 ST	× 30	× 75	
Туре	Configuration	Тор	Face	ST 3.75	SS 3.75 ×	
	Face Fix	-	20	4	-	
1114.070	Wrap Over	4	8	4	-	
JHA270	Face Fix	-	20	-	4	
	Wrap Over	4	8	-	4	

D28 JHA450 Straps hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
JHA270	Steel ref 1 - Steel ref 2	-

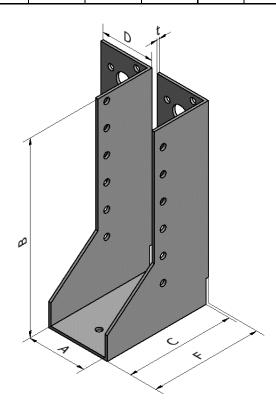
			Dim	onoiono l	ma ma 1				Н	oles	
Blank			Dilli	ensions [mmj			Hea	der	Jo	ist
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size
JHA450/38	38	191	50	51.5	481	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/44	44	188	50	51.5	478	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/47	47	187	50	51.5	477	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/50	50	185	50	51.5	475	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/63	63	179	50	51.5	469	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/75	75	173	50	51.5	463	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/91	91	165	50	51.5	455	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/100	100	160	50	51.5	450	61.5	1.5	38	Ø4	4	Ø4x6
JHA450/125	125	162.5	63	51.5	452.5	64.5	1.5	38	Ø4	6	Ø4x6
JHA450/137	137	156.5	63	51.5	446.5	64.5	1.5	38	Ø4	6	Ø4x6
JHA450/150	150	150	63	51.5	440	64.5	1.5	38	Ø4	6	Ø4x6
Permitted deviation	-	-	±1.0	±1.0	±1.0	±1.0	-	-	-	-	-

Parameters have to be used with equation in Annex C.

Parameters for JHA450 - F1 - timber to timber

Model	I	l _{ef}	S	B _{eff}	a-0.5a _c	е	C _{hor}	kef	d	neff (per flange) round wire
JHA450/38	50	99	35	80	174	36.5	10	1.1	1.1	6
JHA450/44	50	102	35	80	174	36.5	10	1.1	1.1	6
JHA450/47	50	104	35	80	174	36.5	10	1.1	1.1	6
JHA450/50	50	105	35	80	174	36.5	10	1.1	1.1	6
JHA450/63	50	110	35	77	174	36.5	10	1.1	1.1	6
JHA450/75	50	110	35	74	174	36.5	10	1.1	1.1	6
JHA450/91	50	110	35	70	174	36.5	10	1.1	1.1	6
JHA450/100	50	110	35	68	174	36.5	10	1.1	1.1	6
JHA450/125	63	123	44	69	164	31.5	10	1.1	1.1	6
JHA450/137	63	123	44	66	164	31.5	10	1.1	1.1	6
JHA450/150	63	123	44	62	164	31.5	10	1.1	1.1	6

			ng Timber eners	Supported Timber Fasteners		
Hanger Type	Installation	ST 3.7	75 x 30	× 30	× 75	
······ge····ype	Configuration	Тор	Face	ST 3.75	SS 3.75	
	Face Fix	-	20	6	-	
	Wrap Over	4	8	6	-	
1114450	Face Fix	1	20	-	6	
JHA450	Wrap Over	4	8	-	6	
	Face Fix*	-	20	6	-	
	Wrap Over*	4	4	6	-	


^{*}Under slung installation where the joist sits lower than the header

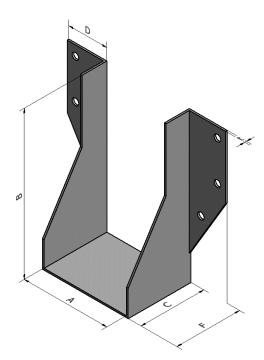
D29 JHR/L Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
JHR	Steel ref 1 - Steel ref 2	-
JHL	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimonoid	ana [mm]			Holes					
Blank		Dimensions [mm]							Header			
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
JHR34462	46	147	84	41.5	86	2	22	Ø5	4	Ø13	12	Ø5
JHL34462	46	147	84	41.5	86	2	22	Ø5	4	Ø13	12	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	1	-	-

Characteristic capacity for JHR-L - Full nailing - F1 - timber to timber


- Cilaractoriot	. . • • • •	capacity for office if an naming if a timber to timber							
				Chavastavisti	a ao na aitu				
Model			Heade	er		Joist	Characteristic capacity [kN] - C24		
iviouei	Rig	id Support		Timber		JOIST			
	n _H	Туре	n _H	Туре		Туре	R _{1,k}	R _{2,k}	
JHR34462	4	Ø12	22	CNA4.0x50	12	CNA4.0x35	17.8	9.7	
JHL34462	4	Ø12	22	CNA4.0x50	12	CNA4.0x35	17.8	9.7	

D30 LUP Joist hanger

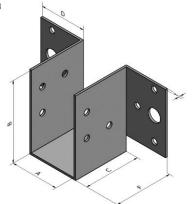
Product Name	Material reference acc. to clause II-1	Alternative Names
LUP	Steel ref 1 - Steel ref 2	-

Dimensions

)imanaia	ons [mm]			Holes					
Blank		· ·	imensio		Hea	ıder	Joist					
	Α	В	С	D	F	t	Qty	Size	Qty	Size		
LUP230	38-50	(230-A)/2	37	23	38	1	6	Ø5	0	Ø5		
LUP24	40	79	38	23.2	39.2	1.2	4	Ø5	0	Ø5		
Permitte d deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-		

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger LUP - Full nailing - F1


41,, 101 00101 1 and got = 01 1 and 1 and 1												
	LU	JP230	L	UP24								
	пн	nJ	nн	nJ								
	6	0	4	0								
Α	В	kH,1	В	kH,1								
38	96	13.7	1	-								
44	93	12.9	-	-								
50	93	12.9	-	-								
40	-	-	79	7.0								

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 158 of 216 of European Technical Assessment no. ETA-06/0270, issue

D31 MF Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
MF	Steel ref 1 - Steel ref 2	-

Dimensions

		Dimo	nsions	[mm]			Holes						
Blank		Dillie	11510115	Limin			Header				Joist		
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
165	32-60	(165-A)/2	45	36.5	46.5	1.5	6	Ø5	2	Ø11	6	Ø5	
180	32-60	(180-A)/2	45	36.5	46.5	1.5	6	Ø5	2	Ø11	6	Ø5	
200	32-60	(200-A)/2	45	36.5	46.5	1.5	8	Ø5	2	Ø11	6	Ø5	
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-	

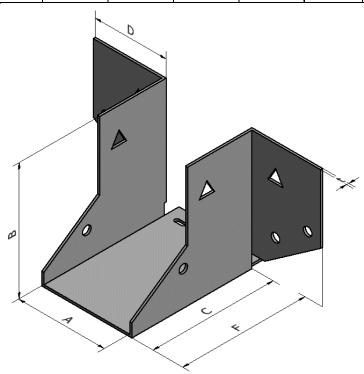
Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger MF - Full nailing - F1

11,1							
		165		180	200		
	n _H n _J		nн	nл	nн	nJ	
	6	6 6		6 6		6	
Α	B kH,1		В	kH,1	В	kH,1	
38	64	10.3	71	10.3	81	15.4	
50	58	8.5	65	8.5	75	13.2	
60	53	7.1	60	60 7.1		11.4	

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

 $k_{\text{H},2}$ for MF - Full or partial nailing - F2

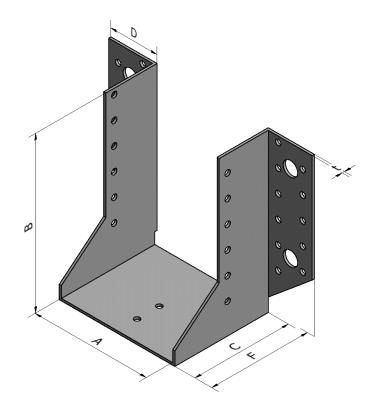

Blank	Total number of nails in the header	k _{H2}			
	Full nailing	Full nailing			
165	6	8.7			
180	6	8.7			
230	8	13.9			

D32 MH Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
MH	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimoneia	ons [mm]			Holes					
Model			Dillielisi	Header		Joist						
	Α	В	С	D	F	t	Qty	Size	Qty	Size		
MH	40-50	50-55	56	33	63	1	4	Ø4	2	Ø4		
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-		


Characteristic capacity for MH - Full nailing - F1 - timber to timber and timber

Model	Fasteners -	· N3.75x30	Characteristic capacity [kN] - C24			
	n _H	nJ	R _{1,k}			
MH	4	2	5.0			

D33 SAE Joist hanger

Product Name Material reference acc. to clause II-1		Alternative Names
SAE	Steel ref 1 - Steel ref 2	-

		D	imanala	na [mm]			Holes							
Blank		וט	mensic	ons [mm]			Header				Joist			
	Α	В	C	D	F	t	Qty	Size	Qty	Size	Qty	Size		
200	24-80	(200-A)/2	84	41.5	86	2	8	Ø5	2	Ø11	5	Ø5		
250	24-80	(250-A)/2	84	41.5	86	2	12	Ø5	2	Ø11	7	Ø5		
300	24-70	(300-A)/2	84	41.5	86	2	18	Ø5	4	Ø13	10	Ø5		
340	24-70	(340-A)/2	84	41.5	86	2	22	Ø5	4	Ø13	12	Ø5		
380	24-110	(380-A)/2	84	41.5	86	2	22	Ø5	4	Ø13	12	Ø5		
440	24-110	(440-A)/2	84	41.5	86	2	28	Ø5	4	Ø13	15	Ø5		
500	24-110	(500-A)/2	84	41.5	86	2	34	Ø5	6	Ø13	18	Ø5		
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	ı	-	1	-	1	-		

Page 161 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Parameters have to be used with equation in Annex C.

k_{H 1} for Joist Hanger SAE - Full nailing - F1

K _{H,1} TO				- Full n			I _		1 _		_		1 _	
	2	200	2:	50	3	00	3	40	3	80	4	40	5	00
	пн	nJ	nн	nJ	nн	nJ	n _H	nJ	nн	nJ	nн	nJ	n _H	nJ
	8	5	12	7	18	10	22	12	22	12	28	15	34	18
Α	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1
32	84	11.6	109	18.4	134	31.0	154	41.0	174	51.8	204	71.7	234	94.6
34	83	11.4	108	18.1	133	30.5	153	40.5	173	51.2	203	71.0	233	93.8
36	82	11.1	107	17.7	132	30.1	152	40.0	172	50.7	202	70.3	232	93.0
38	81	10.9	106	17.4	131	29.6	151	39.4	171	50.1	201	69.7	231	92.3
40	80	10.6	105	17.1	130	29.2	150	38.9	170	49.6	200	69.0	230	91.5
42	79	10.4	104	16.8	129	28.7	149	38.4	169	49.0	199	68.3	229	90.7
44	78	10.2	103	16.4	128	28.3	148	37.9	168	48.5	198	67.7	228	89.9
46	77	9.9	102	16.1	127	27.9	147	37.4	167	47.9	197	67.0	227	89.2
48	76	9.7	101	15.8	126	27.4	146	36.9	166	47.4	196	66.4	226	88.4
50	75	9.4	100	15.5	125	27.0	145	36.4	165	46.9	195	65.7	225	87.7
52	74	9.2	99	15.1	124	26.6	144	35.9	164	46.3	194	65.1	224	86.9
54	73	9.0	98	14.8	123	26.1	143	35.4	163	45.8	193	64.4	223	86.1
56	72	8.7	97	14.5	122	25.7	142	34.9	162	45.2	192	63.8	222	85.4
58	71	8.5	96	14.2	121	25.3	141	34.4	161	44.7	191	63.1	221	84.6
60	70	8.3	95	13.9	120	24.8	140	33.9	160	44.2	190	62.5	220	83.9
62	69	8.0	94	13.6	119	24.4	139	33.4	159	43.6	189	61.8	219	83.1
64	68	7.8	93	13.3	118	24.0	138	32.9	158	43.1	188	61.2	218	82.4
66	67	7.6	92	13.0	117	23.6	137	32.4	157	42.6	187	60.6	217	81.6
68	66	7.3	91	12.7	116	23.2	136	31.9	156	42.1	186	59.9	216	80.9
70	65	7.1	90	12.3	115	22.8	135	31.4	155	41.5	185	59.3	215	80.1
72	64	6.9	89	12.0	-	-	-	-	154	41.0	184	58.6	214	79.4
74	63	6.7	88	11.7	-	-	-	-	153	40.5	183	58.0	213	78.6
76	62	6.4	87	11.4	-	-	-	-	152	40.0	182	57.4	212	77.9
78	61	6.2	86	11.2	-	-	-	-	151	39.4	181	56.8	211	77.2
80	60	6.0	85	10.9	-	-	-	-	150	38.9	180	56.1	210	76.4
82	-	-	-	-	-	-	-	-	149	38.4	179	55.5	209	75.7
84	-	-	-	-	-	-	-	-	148	37.9	178	54.9	208	75.0
86	-	-	-	-	-	-	-	-	147	37.4	177	54.3	207	74.2
88	-	-	-	-	-	-	-	-	146	36.9	176	53.6	206	73.5
90	-	-	-	-	-	-	-	-	145	36.4	175	53.0	205	72.8
92	-	-	-	-	-	-	-	-	144	35.9	174	52.4	204	72.1
94	-	-	-	-	-	-	-	-	143	35.4	173	51.8	203	71.3
96	-	-	-	-	-	-	-	-	142	34.9	172	51.2	202	70.6
98	-	-	-	-	-	-	-	-	141	34.4	171	50.6	201	69.9
100	-	-	-	-	-	-	-	-	140	33.9	170	50.0	200	69.2
102	-	-	-	-	-	-	-	-	139	33.4	169	49.4	199	68.5
104	-	-	-	-	-	-	-	-	138	32.9	168	48.8	198	67.8
106	-	-	-	-	-	-		-	137	32.4	167	48.2	197	67.1
108	-	-	-	-	-	-	-	-	136	31.9	166	47.6	196	66.4
110	-	-	-	-	-	-	-	-	135	31.4	165	47.0	195	65.7

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 162 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

 $\mathbf{k}_{H,1}$ for Joist Hanger SAE and SAIX - Partial nailing - F1

KH,1 IC		00	_	AE and 50		- Fartia 00		<u>19 - F 1</u> 40	38	0	44	<u> </u>	50	0
	ĺ		l	İ				l		l		Ī		l
	n _H	n _J	n _H 6	nյ 4	n _н 10	n _J	n _H 12	n _J	n _H 12	n _J 6	n _H 14	n _J 8	n _H 18	n₃ 10
Α	В	Кн,1	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	B	k _{H,1}	B	k _{H,1}	В	k _{H,1}
32	84	7.7	109	11.7	134	22.3	154	25.0	174.0	31.4	204	41.2	234	58.6
34	83	7.5	108	11.7	133	22.0	153	24.7	174.0	31.4	203	40.8	233	58.2
36	82	7.4	107	11.3	132	21.7	152	24.4	173.0	30.7	202	40.5	232	57.7
38	81	7.2	106	11.1	131	21.4	151	24.1	171.0	30.4	201	40.1	231	57.2
40	80	7.1	105	10.9	130	21.4	150	23.8	171.0	30.4	200	39.7	230	56.8
42	79	7.0	104	10.3	129	20.8	149	23.5	169.0	29.8	199	39.4	229	56.3
44	78	6.8	103	10.7	128	20.6	148	23.2	168.0	29.4	198.0	39.0	228.0	55.9
46	77	6.7	103	10.4	127	20.3	147	22.9	167.0	29.4	198.0	38.7	228.0	55.4
48	76	6.5	102	10.4	126	20.0	146	22.6	166.0	28.8	196.0	38.3	226.0	55.4
50	75	6.4	100	10.2	125	19.7	145	22.3	165.0	28.5	195.0	37.9	225.0	54.5
52	74	6.3	99	9.8	123	19.7	143	22.0	164.0	28.2	193.0	37.6	223.0	54.5
54	73	6.1	98	9.6	123	19.4	143	21.7	163.0		193	37.0	223	
-	72	6.0	97	9.6	123	18.9	143		162.0	27.8	192.0	36.9		53.6 53.2
56	71	5.8	96	9.4		18.6	141	21.4	161.0	27.5 27.2			222.0	52.7
58	70				121						191.0	36.5	221.0	
60	69	5.7 5.6	95 94	9.1 8.9	120 119	18.3 18.0	140 139	20.8	160.0	26.9 26.6	190.0	36.2 35.8	220.0	52.3 51.8
62	68	5.4	93	8.7	118	17.7	138	20.5	159.0 158.0		189.0		219.0	
64			93					20.2		26.3	188.0	35.5	218.0	51.4
66	67	5.3		8.5	117	17.4	137	19.9	157.0	25.9	187	35.1	217	50.9
68	66	5.2	91	8.4	116	17.2	136	19.6	156.0	25.6	186.0	34.7	216.0	50.5
70	65	5.0	90	8.2	115	16.9	135	19.3	155.0	25.3	185.0	34.4	215.0	50.0
72	64	4.9	89	8.0	-	-	-	-	154.0	25.0	184.0	34.0	214.0	49.6
74	63	4.7	88	7.8	-	-	-	-	153.0	24.7	183.0	33.7	213.0	49.2
76	62	4.6	87	7.6	-	-	-	-	152.0	24.4	182.0	33.4	212.0	48.7
78	61	4.5	86	7.5	-	-	-	-	151.0	24.1	181	33.0	211	48.3
80	60	4.3	85	7.3	-	-	-	-	150.0	23.8	180	32.7	210	47.8
82	-	-	-	-	-	-	-	-	149.0	23.5	179	32.3	209	47.4
84	-	-	-	-	-	-	-	-	148.0	23.2	178	32.0	208	47.0
86	-	-	-	-	-	-	-	-	147.0	22.9	177	31.6	207	46.5
88	-	-	-	-	-	-	-	-	146.0	22.6	176	31.3	206	46.1
90	-	-	-	-	-	-	-	-	145.0	22.3	175	30.9	205	45.7
92	-	-	-	-	-	-	-	-	144.0	22.0	174	30.6	204	45.2
94	-	-	-	-	-	-	-	-	143.0	21.7	173	30.3	203	44.8
96	-	-	-	-	-	-	-	-	142.0	21.4	172	29.9	202	44.4
98	-	-	-	-	-	-	-	-	141.0	21.1	171	29.6	201	43.9
100	-	-	-	-	-	-	-	-	140.0	20.8	170	29.3	200	43.5
102	-	-	-	-	-	-	-	-	139.0	20.5	169	28.9	199	43.1
104	-	-	-	-	-	-	-	-	138.0	20.2	168	28.6	198	42.7
106	-	-	-	-	-	-	-	-	137.0	19.9	167	28.3	197	42.2
108	-	-	-	-	-	-	-	-	136.0	19.6	166	27.9	196	41.8
110	-	-	-	-	-	-		-	135.0	19.3	165	27.6	195	41.4

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

k_{H,2} for SAE - Full or partial nailing - F2

Blank		ber of nails header	k _{H2}			
	Full nailing	Partial nailing	Full nailing	Partial nailing		
200	8	4	5.6	3		
250	12	6	10.3	4.2		
300	18	10	19.9	11.4		
340	22	12	28.1	15.8		
380	22	12	28.1	15.8		
440	28	14	42.9	20.4		
500	34	18	60.8	32.9		

 $n_{j,ef,1}$ and $n_{j,ef,2}$ for SAE - Full or partial nailing - F1 or F2

	Total num	ber of nails		-1	F2			
Blank	in the	e joist		1				
Blank	Full poiling	Dorticl nailing	Full nailing	Partial nailing	Full nailing	Partial nailing		
	Full nailing	Partial nailing	n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}		
200	5	4	1.29	1.29	1.26	1.24		
250	7	4	2.84	2.13	2.69	1.92		
300	10	6	6.15	3.9	5.54	3.4		
340	12	6	8.76	4.91	7.69	4		
380	12	6	8.76	4.91	7.69	4		
440	15	8	12.92	7.59	11.06	5.99		
500	18	10	17.08	10.69	14.46	8.21		

SAE joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in Annex B3 for connection to column and above coefficients, valid for partial nailing, apply.

Page 164 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Characteristic capacity for SAE with Square twist nails - Full nailing - F1 - timber to timber

Model	Dim	ensions ¹⁾	Total no. twist nails 3	•	Characteristic capacity ²⁾	
	Α	В	n _H	nı	R _{1,k}	
250	50	100	12	7	13.5	
250	76	87	12	7	13.5	
380	38	171	22	12	22.3	
380	45	167.5	22	12	22.3	
380	50	165	22	12	22.3	
380	64	158	22	12	22.3	
380	66	157	22	12	22.3	
380	76	152	22	12	22.3	
380	90	145	22	12	22.3	
380	92	144	22	12	22.3	
380	100	140	22	12	22.3	
500	38	231	34	18	35	
500	46	227	34	18	35	
500	50	225	34	18	35	
500	64	218	34	18	35	
500	66	217	34	18	35	
500	76	212	34	18	35	
500	91	204.5	34	18	35	
500	100	200	34	18	35	
500	125	187.5	32	16	28	

¹⁾ For futher dimensions see the section Dimensions of this annex

²⁾ The characteristic capacity is given for Timber Grade C24 (characteristic density of 350 kg/m³)

Characteristic capacity for SAE - with connector screw SSH/SSF

			Produ	ct capac	cities - Timber to Timber - Large connector screw							
		Fastener	S		Characteristic capacities - Timber C24							
References			Joist		R _{1.k}					R	2.k	
			Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
SAE200	2	SSH10.0x40 ⁽¹⁾	5	CNA*	5,6	5,9	6,4	6,6	5,8	6,0	6,5	6,7
SAE250	2	SSH10.0x40 ⁽¹⁾	7	CNA*	7,1	7,2	7,2	7,2	7,0	7,2	7,2	7,2
SAE300	4	SSH12.0x60 ⁽¹⁾	10	CNA*	11,5	11,5	11,5	11,5	11,5	11,5	11,5	11,5
SAE340	4	SSH12.0x60 ⁽¹⁾	12	CNA*	18,5	19,8	21,1	21,3	18,5	19,8	21,1	21,3
SAE380	4	SSH12.0x60 ⁽¹⁾	12	CNA*	18,5	19,8	21,1	21,3	18,5	19,8	21,1	21,3
SAE440	4	SSH12.0x60 ⁽¹⁾	15	CNA*	22,1	22,8	23,0	23,0	22,1	22,8	23,0	23,0
SAE500	6	SSH12.0x60 ⁽¹⁾	18	CNA*	27,7	30,6	33,4	33,6	27,7	30,6	33,4	33,6

⁽¹⁾ SSH can be replaced by SSF

			Produ	ct capac	ities - Ti	mber to T	imber - L	arge cor	nector s	crew		
		Fastener	S		Characteristic capacities - Timber C24							
References	es Header			Joist		R _{3.k}				R	4.k	
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60
SAE200	2	SSH10.0x40 ⁽¹⁾	5	CNA*	2,1	2,6	3,7	4,2	5,0	5,0	5,0	5,0
SAE250	2	SSH10.0x40 ⁽¹⁾	7	CNA*	2,0	2,2	2,7	3,2	5,0	5,0	5,0	5,0
SAE300	4	SSH12.0x60 ⁽¹⁾	10	CNA*	3,4	3,6	4,1	4,6	5,0	5,0	5,0	5,0
SAE340	4	SSH12.0x60 ⁽¹⁾	12	CNA*	3,9	4,8	6,5	7,3	10,0	10,0	10,0	10,0
SAE380	4	SSH12.0x60 ⁽¹⁾	12	CNA*	3,9	4,8	5,6	6,4	10,0	10,0	10,0	10,0
SAE440	4	SSH12.0x60 ⁽¹⁾	15	CNA*	4,2	4,9	5,4	6,0	10,0	10,0	10,0	10,0
SAE500	6	SSH12.0x60 ⁽¹⁾	18	CNA*	4,5	5,7	6,6	7,2	15,0	15,0	15,0	15,0

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber, which is not included in these capacities.

The capacity is increased for the following configuration:

References		Product cap	pacities	s - Timber to Ti	mber - Large	e connect	or screw		
		Fastei	ners		Characteristic capacities - Timber C24				
		Header		Joist	В	В	В	В	
	Qty	Type	Qty	Туре	R _{1.k}	R _{2.k}	R _{3.k}	R _{4.k}	
SAE200/38/2	2	SSH10.0x40 ⁽¹⁾	5	CNA4.0x35	6.23	5.79	2.20	5.00	

⁽¹⁾SSH can be replaced by SSF

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

D34 SAE250/38/1,5 Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAE250/38/1.5	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimensio	ne [mm]			Holes					
Blank			Dillielisi	נווווון פווכ		Header				Joist		
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
250	38	106	84	41.5	87	1.5	12	Ø5	2	Ø11	7	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Characteristic capacity for SAE - Full nailing - Timber to timber

Model	Fasteners -	CNA4.0x35	Characteristic capacity [kN] - C24				
Wiodei	n _H	nJ	R _{1,k}	R _{2,k}	R _{3,k}		
SAE250/38/1.5	12	7	10.8	4.7	6.4		

To change the timber density instead of using the k_{dens} factor use in this specific case:

Timber class	C14	C16	C18	C20	C22	C24
Factor	0.91	0.93	0.95	0.96	0.98	1.00

Characteristic capacity for SAE - Timber to rigid support

Characteristic		F	asteners		Characteristic capacity [kN]			
Model	Н	eader		Joist				
	n _H	Туре	nJ	Туре	R _{1,k}	R _{2,k}	R _{3,k}	
SAE250/38/1.5	2	M10	7	CNA4.0x35	11.7	5.0	4.4	
SAE250/38/1.5*	2	M10	5	CNA4.0x35	11.7	4.3	4.4	

^{*}For joist > 95 mm

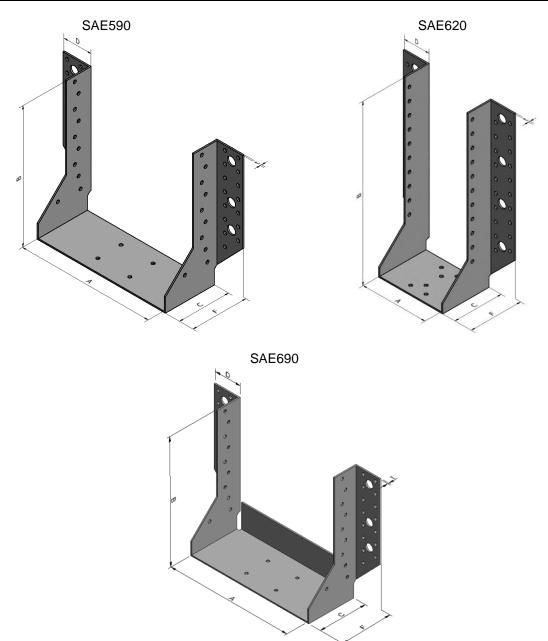
Page 167 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

The check of the connection with the bolts has to be make as following.

The bolt group (both bolts) has to be as minimum:

a lateral capacity of $F_{i.d}$ x $f_{bolt.lat}^{\star\star}$ for the bolt on the far side of the force

an axial capacity of F_{i.d} x f_{bolt.ax}


	f _{bolt.lat}	f _{bolt.ax}
R _{1,k}	1,00	0,40
R _{2,k}	1,00	1,22
R _{3,k}	1,00**	0,50

Timber elements have to be checked also according to EN 1995, 8.1.4 for direction force F2.

D35 SAE590, SAE620 and SAE690 Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAE	Steel ref 1 - Steel ref 2	-

	Holes											
Blank		Dimensions [mm]							Header			
	A B C D F t							Size	Qty	Size	Qty	Size
590	200	(590-A)/2	78	43	84	1.5 - 2	30	Ø5	6	Ø13	20	Ø5
620-a	38-100	(620-A)/2	75	40	81	1.5 - 2	40	Ø5	8	Ø13	22	Ø5
620-b	101-125	(620-A)/2	75	40	77	1.5 - 2	40	Ø5	8	Ø13	22	Ø5
690	201-300	195	82	42	84	1.5 - 2	30	Ø5	6	Ø13	20	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C

k_{H,1} for Joist Hanger SAE590 - SAE620 - SAE690 - Full nailing - F1

.чп, г	biot Harigor Gr		1-000	<u> </u>			r an manning .		
	5	90	62	20	62	20	6	90	
	nн	nJ	nн	nJ	nн	nJ	nн	nJ	
	30	20	40	22	40	22	40	22	
Α	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	
38	-	•	291	170.5	-	-	-	-	
45	-	•	287.5	166.5	-	ı	-	-	
50	-	1	285	163.6	-	1	•	-	
64	-	-	278	155.6	-	-	-	-	
76	-	-	272	148.8	-	-	-	-	
100	-	-	260	135.5	-	-	-	-	
125	-	-	-	-	247.5	132.6	-	-	
150	-	-	-	-	235	119.4	-	-	
200	195	105	210	85.4	-	-	-	-	
201-300	-	-	-	-	-	-	195	105	

 $k_{H,2}$ for SAE590 - SAE620 - SAE690 - Full or partial nailing - F2

	Total num	nber of nails	k _{H2}			
Blank	in the	header				
	Full nailing	Partial nailing	Full nailing	Partial nailing		
590	30	16	81.5	40.9		
620-a	40	20	105.1	48.9		
620-b	40	22	114.7	61.3		
690	30	16	81.5	40.9		

 $\underline{n_{j,ef,1}}$ and $\underline{n_{j,ef,2}}$ for SAE590 - SAE620 - SAE690 - Full or partial nailing - F1 or F2

Dlouk		nber of nails ne joist		F1	F2		
Blank	Full nailing	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing	
	rull Halling	Partial Halling	n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}	
590	20	10	18.46	9.11	15.9	7.42	
620-a	22	12	20.67	10.69	17.87	8.9	
620-b	22	12	22.35	12	18.92	9.62	
690	20	10	18.46	9.11	15.9	7.42	

SAE joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in <u>Annex B3</u> for connection to column and above coefficients, valid for partial nailing, apply.

Page 170 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Characteristic capacity for SAE590 - SAE620 - SAE690 with Square twist nails - Full nailing - F1 timber to timber

Model	Di	imensions ¹⁾	Total no. twist nails 3	Characteristic capacity ²⁾	
	Α	В	n _H	nı	R _{1,k}
590	200	195	30	20	30
620	38	291	40	22	50
620	44	288	40	22	50
620	50	285	40	22	50
620	64	278	40	22	50
620	76	272	40	22	50
620	91	264.5	40	22	50
620	100	260	40	22	50
620	116	252	40	22	50
620	125	247.5	40	22	50
620	150	235	40	22	50
620	195	200-300	30	20	30

¹⁾ For further dimensions see the section Dimensions of this annex 2) The characteristic capacity is given for Timber Grade C24 (characteristic density of 350 kg/m3)

D36 SAEL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAEL	Steel ref 1 - Steel ref 2	-

		Dimensions [mm]							Holes				
Blank		Dimen	sions įr	nmj			Header				Joist		
	Α	В	C	D	F	t	Qty	Size	Qty	Size	Qty	Size	
200	24-80	(200-A)/2	84	41.5	86	2	8	Ø5	2	Ø11	5	Ø5	
250	24-80	(250-A)/2	84	41.5	86	2	12	Ø5	2	Ø11	7	Ø5	
300	24-116	(300-A)/2	84	41.5	86	2	18	Ø5	4	Ø13	10	Ø5	
340	24-116	(340-A)/2	84	41.5	86	2	22	Ø5	4	Ø13	12	Ø5	
380	24-156	(380-A)/2	84	41.5	86	2	22	Ø5	4	Ø13	12	Ø5	
440	24-156	(440-A)/2	84	41.5	86	2	28	Ø5	4	Ø13	15	Ø5	
500	24-156	(500-A)/2	84	41.5	86	2	34	Ø5	6	Ø13	18	Ø5	
Permitted deviation	-	-	±1.0	±1.0	±1.0	ı	-	-	-	-		-	

Parameters have to be used with equation in Annex C

k_{H,1} for Joist Hanger SAEL - Full nailing - F1

k _{H,1} for Jo	к _{н,1} for Joist Hanger SAEL - Full nailing - F1										
	3	00	3	40	3	80	4	40	5	00	
	n⊦	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	
	16	8	20	10	20	10	26	13	32	16	
A	В	k _{H,1}	В	k H,1	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	
32	134	31.1	154	41.2	174	51.5	204	71.5	234	94.5	
34	133	30.6	153	40.7	173	51.0	203	70.9	233	93.8	
36	132	30.2	152	40.2	172	50.5	202	70.2	232	93.0	
38	131	29.8	151	39.7	171	49.9	201	69.6	231	92.3	
40	130	29.4	150	39.2	170	49.4	200	69.0	230	91.5	
42	129	29.0	149	38.7	169	48.9	199	68.3	229	90.8	
44	128	28.5	148	38.2	168	48.4	198	67.7	228	90.0	
46	127	28.1	147	37.7	167	47.9	197	67.0	227	89.3	
48	126	27.7	146	37.2	166	47.3	196	66.4	226	88.5	
50	125	27.3	145	36.7	165	46.8	195	65.8	225	87.8	
52	124	26.9	144	36.2	164	46.3	194	65.1	224	87.0	
54	123	26.4	143	35.7	163	45.8	193	64.5	223	86.3	
56	122	26.0	142	35.2	162	45.3	192	63.9	222	85.5	
58	121	25.6	141	34.7	161	44.8	191	63.2	221	84.8	
60	120	25.2	140	34.3	160	44.2	190	62.6	220	84.0	
62	119	24.8	139	33.8	159	43.7	189	62.0	219	83.3	
64	118	24.4	138	33.3	158	43.2	188	61.4	218	82.6	
66	117	24.0	137	32.8	157	42.7	187	60.7	217	81.8	
68	116	23.6	136	32.3	156	42.2	186	60.1	216	81.1	
70	115	23.2	135	31.9	155	41.7	185	59.5	215	80.4	
72	114	22.8	134	31.4	154	41.2	184	58.9	214	79.6	
74	113	22.4	133	30.9	153	40.7	183	58.3	213	78.9	
76	112	22.0	132	30.4	152	40.2	182	57.6	212	78.2	
78	111	21.6	131	30.0	151	39.7	181	57.0	211	77.5	
80	110	21.2	130	29.5	150	39.2	180	56.4	210	76.7	
82	109	20.8	129	29.0	149	38.7	179	55.8	209	76.0	
84	108	20.4	128	28.6	148	38.2	178	55.2	208	75.3	
86	107	20.0	127	28.1	147	37.7	177	54.6	207	74.6	
90	106	19.6 19.2	126 125	27.7 27.2	146 145	37.2	176 175	54.0 53.4	206	73.9 73.2	
92	105 104	18.9	123	26.8	144	36.7	174	52.8	205 204	72.5	
94	103	18.5	123	26.3	143	36.2 35.7	173	52.2	203	71.7	
96	103	18.1	122	25.9	142	35.2	172	51.6	202	71.7	
98	101	17.7	121	25.4	141	34.7	171	51.0	201	70.3	
100	100	17.4	120	25.0	140	34.3	170	50.4	200	69.6	
102	99	17.0	119	24.5	139	33.8	169	49.8	199	68.9	
104	98	16.6	118	24.1	138	33.3	168	49.2	198	68.2	
106	97	16.3	117	23.7	137	32.8	167	48.6	197	67.5	
108	96	15.9	116	23.2	136	32.3	166	48.0	196	66.9	
110	95	15.5	115	22.8	135	31.9	165	47.5	195	66.2	
112	94	15.2	114	22.4	134	31.4	164	46.9	194	65.5	
114	93	14.8	113	22.0	133	30.9	163	46.3	193	64.8	
116	92	14.5	112	21.6	132	30.4	162	45.7	192	64.1	
118	91	14.2	111	21.1	131	30.0	161	45.1	191	63.4	
120	90	13.8	110	20.7	130	29.5	160	44.6	190	62.7	
122	-	-	-	-	129	29.0	159	44.0	189	62.1	
124	-	-	-	-	128	28.6	158	43.4	188	61.4	
126	-	-	-	-	127	28.1	157	42.9	187	60.7	
128	-	-	-	-	126	27.7	156	42.3	186	60.1	
130	-	-	-	-	125	27.2	155	41.7	185	59.4	
132	-	-	-	-	124	26.8	154	41.2	184	58.7	
134	-	-	-	-	123	26.3	153	40.6	183	58.1	
136	-	-	-	-	122	25.9	152	40.1	182	57.4	
138	-	-	-	-	121	25.4	151	39.5	181	56.8	
140	-	-	-	-	120	25.0	150	39.0	180	56.1	
	-										

Page 173 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

142	-	-	-	-	119	24.5	149	38.4	179	55.5
144	-	-	-	-	118	24.1	148	37.9	178	54.8
146	-	-	-	-	117	23.7	147	37.4	177	54.2
148	-	-	1	•	116	23.2	146	36.8	176	53.6
150	-	-	1	•	115	22.8	145	36.3	175	52.9
152	-	-	1	•	114	22.4	144	35.8	174	52.3
154	-	-	1	•	113	22.0	143	35.3	173	51.7
156	-	-	1	•	112	21.6	142	34.7	172	51.0
158	-	-	-	-	111	21.1	141	34.2	171	50.4
160	-	-	-	-	110	20.7	140	33.7	170	49.8

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

 $\mathbf{k}_{\text{H,1}}$ for Joist Hanger SAEL - Partial nailing - F1

KH,1 for Jois	Hanger SAEL		L - Par	I				T			
	3	00	3	40	3	80	4	40	5	00	
	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	
	8	4	10	6	10	6	12	7	16	8	
Α	В	k H,1	В	k H,1	В	k _{H,1}	В	k H,1	В	k H,1	
32	134	18.8	154	24.0	174	29.4	204	38.8	234	55.7	
34	133	18.6	153	23.8	173	29.1	203	38.5	233	55.3	
36	132	18.3	152	23.5	172	28.8	202	38.2	232	54.9	
38	131	18.1	151	23.3	171	28.5	201	37.9	231	54.5	
40	130	17.9	150	23.0	170	28.3	200	37.6	230	54.1	
42	129	17.6	149	22.8	169	28.0	199	37.3	229	53.7	
44	128	17.4	148	22.5	168	27.7	198	37.0	228	53.3	
46	127	17.2	147	22.3	167	27.5	197	36.7	227	53.0	
48	126	17.0	146	22.0	166	27.2	196	36.4	226	52.6	
50	125	16.7	145	21.8	165	26.9	195	36.1	225	52.2	
52	124	16.5	144	21.5	164	26.7	194	35.8	224	51.8	
54	123	16.3	143	21.3	163	26.4	193	35.5	223	51.5	
56	122	16.1	142	21.0	162	26.1	192	35.2	222	51.1	
58	121	15.9	141	20.8	161	25.9	191	35.0	221	50.7	
60	120	15.6	140	20.5	160	25.6	190	34.7	220	50.3	
62	119	15.4	139	20.3	159	25.3	189	34.4	219	50.0	
64	118	15.2	138	20.0	158	25.1	188	34.1	218	49.6	
66	117	15.0	137	19.8	157	24.8	187	33.8	217	49.2	
68	116	14.8	136	19.6	156	24.6	186	33.5	216	48.8	
70	115	14.6	135	19.3	155	24.3	185	33.2	215	48.5	
72	114	14.3	134	19.1	154	24.0	184	32.9	214	48.1	
74	113	14.1	133	18.9	153	23.8	183	32.6	213	47.7	
76	112	13.9	132	18.6	152	23.5	182	32.4	212	47.4	
78	111	13.7	131	18.4	151	23.3	181	32.1	211	47.0	
80	110	13.5	130	18.2	150	23.0	180	31.8	210	46.7	
82	109	13.3	129	17.9	149	22.8	179	31.5	209	46.3	
84	108	13.1	128	17.7	148	22.5	178	31.2	208	45.9	
86	107	12.9	127	17.5	147	22.3	177	30.9	207	45.6	
88	106	12.7	126	17.2	146	22.0	176	30.7	206	45.2	
90	105	12.5	125	17.0	145	21.8	175	30.4	205	44.9	
92	104	12.3	124	16.8	144	21.5	174	30.1	204	44.5	
94	103	12.1	123	16.6	143	21.3	173	29.8	203	44.2	
96	102	11.9	122	16.4	142	21.0	172	29.6	202	43.8	
98	101	11.7	121	16.1	141	20.8	171	29.3	201	43.5	
100	100	11.5	120	15.9	140	20.5	170	29.0	200	43.1	
102	99	11.3	119	15.7	139	20.3	169	28.8	199	42.8	
104	98	11.1	118	15.5	138	20.0	168	28.5	198	42.4	
106	97	11.0	117	15.3	137	19.8	167	28.2	197	42.1	
108	96	10.8	116	15.1	136	19.6	166	28.0	196	41.7	
110 112	95	10.6	115	14.9	135	19.3	165	27.7	195	41.4	
114	94 93	10.4	114 113	14.7 14.5	134 133	19.1 18.9	164 163	27.4 27.2	194 193	41.1	
116	93	10.3	112	14.3	132	18.6	162	26.9	193	40.7	
118	91	9.9	111	14.3	131	18.4	161	26.6	191	40.4	
120	90	9.7	110		130	18.2	160	26.4	190	39.7	
120	-		-	13.9	129	17.9	159	26.1	189	39.4	
124	-	-	-	-	128	17.9	158	25.9	188	39.4	
124	-	-	-	-	127	17.7	157	25.6	187	38.7	
128	-	-	-	-	126	17.3	156	25.4	186	38.4	
130	-	-	-	-	125	17.2	155	25.4	185	38.1	
132	-	-	-	-	124	16.8	154	24.9	184	37.8	
134	-	-	-	-	123	16.6	153	24.6	183	37.5	
136	-	-	-	-	122	16.4	152	24.4	182	37.1	
138	-	-	-	-	121	16.1	151	24.2	181	36.8	
140	-	-	-	-	120	15.9	150	23.9	180	36.5	
170					.20	.0.0	.00	20.0	.00	50.5	

Page 175 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

142	-	-	-	-	119	15.7	149	23.7	179	36.2
144	-	-	-	-	118	15.5	148	23.5	178	35.9
146	-	-	-	-	117	15.3	147	23.2	177	35.6
148	-	-	1	-	116	15.1	146	23.0	176	35.3
150	-	-	-	-	115	14.9	145	22.8	175	35.0
152	-	-	-	-	114	14.7	144	22.5	174	34.7
154	-	-	-	-	113	14.5	143	22.3	173	34.4
156	-	-	-	-	112	14.3	142	22.1	172	34.1
158	-	-	1	-	111	14.1	141	21.9	171	33.8
160	-	-	1	-	110	13.9	140	21.7	170	33.5

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

k_{H,2} for SAEL - Full or partial nailing - F2

		. partiai maiimg	. –			
	Total num	nber of nails	k _{H2}			
Blank	in the	header				
	Full nailing	Partial nailing	Full nailing	Partial nailing		
300	16	8	16.4	7.9		
340	20	10	23.8	11.4		
380	20	10	23.8	11.4		
440	26	12	37.6	21.9		
500	32	16	54.5	25.9		

n_{j,ef,1} and n_{j,ef,2} for SAEL - Full or partial nailing - F1 or F2

	Total num	ber of nails		F1	F2			
Blank	in the	e joist		• •				
Blank	Full poiling	Dorticl nailing	Full nailing	Partial nailing	Full nailing	Partial nailing		
	Full nailing	Partial nailing	n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}		
300	8	4	3.83	2.59	3.57	2.23		
340	10	6	6.15	4.22	5.54	3.61		
380	10	6	6.15	4.22	5.54	3.61		
440	13	8	10.13	6.45	8.81	5.38		
500	16	8	14.31	7.78	12.2	6.08		

SAEL joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in <u>Annex B3</u> for connection to column and above coefficients, valid for partial nailing, apply.

Characteristic capacity for SAEL with Square twist nails - Full nailing - F1 - timber to timber

Model	Dimen	sions¹)	Total no. twist nails 3	Characteristic capacity ²⁾		
	Α	В	n _H	nJ	R _{1,k}	
500	150	175	32	16	28	

¹⁾For futher dimensions see the section Dimensions of this annex

²⁾ The characteristic capacity is given for Timber Grade C24 (characteristic density of 350 kg/m³)

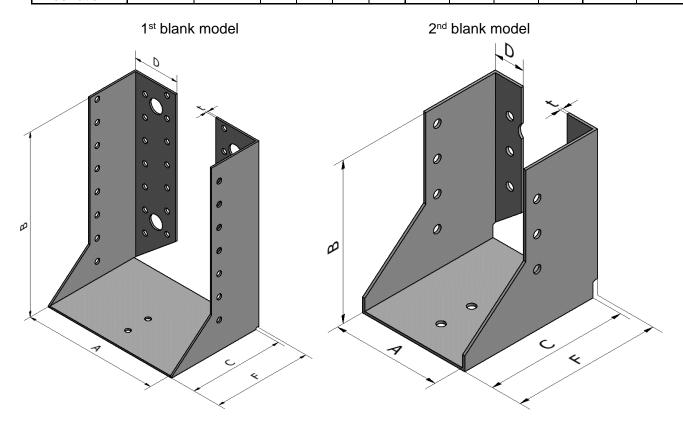
Characteristic capacity for SAEL - with connector screw SSH/SSF

			Produc	t capaci	ities - Tin	nber to T	imber - L	arge con	nector so	crew				
		Fastenei	'S		Characteristic capacities - Timber C24									
References	Header		Joist		R _{1.k}				R _{2.k}					
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60		
SAEL300	4	SSH12.0x60 ⁽¹⁾	8	CNA*	10,7	11,0	11,4	11,5	10,8	11,1	11,4	11,5		
SAEL340	4	SSH12.0x60 ⁽¹⁾	10	CNA*	15,4	17,0	19,2	19,8	15,4	17,0	19,8	20,3		
SAEL380	4	SSH12.0x60 ⁽¹⁾	10	CNA*	15,4	17,0	19,2	19,8	15,4	17,0	19,8	20,3		
SAEL440	4	SSH12.0x60 ⁽¹⁾	13	CNA*	19,9	21,2	22,8	23,0	20,0	21,6	22,8	23,0		
SAEL500	6	SSH12.0x60 ⁽¹⁾	16	CNA*	24,6	27,2	31,8	32,8	24,6	27,2	32,2	33,0		

⁽¹⁾SSH can be replaced by SSF

			Produc	ct capac	ities - Tin	nber to T	imber - L	arge con	nector so	crew			
		Fastenei	'S		Characteristic capacities - Timber C24								
References	Header		Joist		R _{3.k}				R _{4.k}				
	Qty	Туре	Qty	ty Type 4		4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
SAEL300	4	SSH12.0x60 ⁽¹⁾	8	CNA*	3,0	3,6	4,1	4,6	5,0	5,0	5,0	5,0	
SAEL340	4	SSH12.0x60 ⁽¹⁾	10	CNA*	3,5	4,4	6,3	7,3	10,0	10,0	10,0	10,0	
SAEL380	4	SSH12.0x60 ⁽¹⁾	10	CNA*	3,5	4,4	5,6	6,4	10,0	10,0	10,0	10,0	
SAEL440	4	SSH12.0x60 ⁽¹⁾	13	CNA*	4,0	4,9	5,4	6,0	10,0	10,0	10,0	10,0	
SAEL500	6	SSH12.0x60 ⁽¹⁾	16	CNA*	4,3	5,4	6,6	7,2	15,0	15,0	15,0	15,0	

⁽¹⁾SSH can be replaced by SSF


The user shall verify the transversal tension in timber, which is not included in these capacities.

^{*}Refer to *Characteristic capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

D37 SAI Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAI	Steel ref 1 - Steel ref 2	-

			Dimens	iona [mm1			Holes						
	Blank		Dilliells	10115 <u>[</u> 1				Header				Joist		
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size	
	200	64-80	(200-A)/2	76	33.5	82	2	6	Ø5	2	Ø12	4	Ø5	
-	250	64-80	(250-A)/2	76	33.5	82	2	10	Ø5	2	Ø12	6	Ø5	
Blank model	300	64-80	(300-A)/2	76	33.5	82	2	16	Ø5	4	Ø12	9	Ø5	
nk r	340	64-120	(340-A)/2	76	33.5	82	2	16	Ø5	4	Ø12	10	Ø5	
	380	64-120	(380-A)/2	76	33.5	82	2	20	Ø5	4	Ø12	12	Ø5	
1st	440	64-120	(440-A)/2	76	33.5	82	2	26	Ø5	4	Ø12	15	Ø5	
	500	64-120	(500-A)/2	76	33.5	82	2	32	Ø5	6	Ø12	18	Ø5	
ıd nk del	200	38-63	(200-A)/2	76	17.5	82	2	4	Ø5	-	-	4	Ø5	
2nd blank model	250	38-63	(250-A)/2	76	17.5	82	2	6	Ø5	-	-	6	Ø5	
	Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-	

Page 178 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Parameters have to be used with equation in Annex C

k_{H,1} for Joist Hanger SAI 1st blank model - Full nailing - F1

KH,1 TOT C		200		250	3	00	3	40	3	80	4	40	5	00
	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ	n _H	nJ
	6	4	10	6	16	9	16	10	20	12	26	15	32	18
Α	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}	В	k _{H.1}
64	68	6.3	93	11.8	118	21.5	138	29.1	158	39.1	188	58.4	218	77.3
66	67	6.1	92	11.5	117	21.1	137	28.7	157	38.6	187	57.8	217	76.6
68	66	5.9	91	11.2	116	20.7	136	28.3	156	38.2	186	57.2	216	75.8
70	65	5.7	90	10.9	115	20.3	135	27.9	155	37.7	185	56.6	215	75.1
72	64	5.5	89	10.7	114	20.0	134	27.5	154	37.2	184	56.0	214	74.4
74	63	5.3	88	10.4	113	19.6	133	27.1	153	36.7	183	55.4	213	73.7
76	62	5.2	87	10.1	112	19.2	132	26.7	152	36.2	182	54.8	212	73.0
78	61	5.0	86	9.9	111	18.9	131	26.3	151	35.8	181	54.2	211	72.3
80	60	4.8	85	9.6	110	18.5	130	25.9	150	35.3	180	53.6	210	71.6
82	-	•	-	ı	109	18.1	129	25.5	149	34.8	179	53.0	209	70.9
84	-	•	-	-	108	17.8	128	25.1	148	34.3	178	52.4	208	70.2
86	-	•	-	ı	107	17.4	127	24.7	147	33.9	177	51.8	207	69.5
88	-	•	-	•	106	17.1	126	24.3	146	33.4	176	51.2	206	68.8
90	-	-	-	-	105	16.7	125	23.9	145	32.9	175	50.6	205	68.2
92	-	•	-	•	104	16.4	124	23.5	144	32.5	174	50.0	204	67.5
94	-	•	-	ı	103	16.0	123	23.1	143	32.0	173	49.4	203	66.8
96	-	•	-	ı	102	15.7	122	22.7	142	31.5	172	48.9	202	66.1
98	-	-	-	-	101	15.3	121	22.4	141	31.1	171	48.3	201	65.4
100	-	-	-	-	100	15.0	120	22.0	140	30.6	170	47.7	200	64.8
102	-	-	-	-	99	14.7	119	21.6	139	30.2	169	47.1	199	64.1
104	-	-	-	-	98	14.3	118	21.2	138	29.7	168	46.5	198	63.4
106	-	-	-	-	97	14.0	117	20.8	137	29.3	167	46.0	197	62.7
108	-	-	-	-	96	13.7	116	20.5	136	28.8	166	45.4	196	62.1
110	-	-	-	-	95	13.4	115	20.1	135	28.4	165	44.8	195	61.4
112	-	-		-	94	13.0	114	19.7	134	27.9	164	44.3	194	60.7
114	-	-	-	-	93	12.7	113	19.3	133	27.5	163	43.7	193	60.1
116	-	-	-	-	92	12.4	112	19	132	27.0	162	43.1	192	59.4
118	-	-	-	-	91	12.1	111	18.6	131	26.6	161	42.6	191	58.8
120	-	-	-	-	90	11.8	110	18.3	130	26.2	160	42.0	190	58.1

In the case of intermediate width, $k_{H,1}$ can be calculated by linear interpolation.

Page 179 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

k_{H,1} for Joist Hanger SAI 2nd blank model - Full nailing - F1

	20	00	25	50
	nн	nJ	nн	nJ
	4	4	6	6
Α	В	k _{H,1}	В	k _{H,1}
38	81	5.2	106	8.1
40	80	5.0	105	7.9
42	79	4.9	104	7.8
44	78	4.8	103	7.6
46	77	4.7	102	7.5
48	76	4.5	101	7.3
50	75	4.4	100	7.1
52	74	4.3	99	7.0
54	73	4.2	98	6.8
56	72	4.0	97	6.7
58	71	3.9	96	6.5
60	70	3.8	95	6.4
62	69	3.7	94	6.2
63	69	3.6	94	6.1

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

Page 180 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

 $k_{\text{H},1}$ for Joist Hanger SAI 1st blank model - Partial nailing - F1

KH,1 IOI JOI		200		250		00		9 - 1 1 40	3	80	4	40	5	00
	n _H	nJ	nн	nJ	n _H	nJ	n _H	nJ						
	-	-	6	6	10	9	10	10	12	12	14	15	18	18
Α	В	k H.1	В	k H.1	В	k H.1	В	k _{H.1}	В	k H.1	В	k H.1	В	k H.1
64	-	-	93	6.5	118	14.1	138	19.3	158	25.5	188	31.1	218	45.7
66	-	-	92	6.4	117	13.9	137	19	157	25.2	187	30.8	217	45.3
68	-	-	91	6.2	116	13.7	136	18.7	156	24.9	186	30.4	216	44.9
70	-	-	90	6	115	13.4	135	18.5	155	24.5	185	30.1	215	44.5
72	-	-	89	5.9	114	13.2	134	18.2	154	24.2	184	29.8	214	44.1
74	-	-	88	5.7	113	13	133	17.9	153	23.9	183	29.4	213	43.7
76	-	-	87	5.5	112	12.7	132	17.7	152	23.6	182	29.1	212	43.3
78	-	-	86	5.4	111	12.5	131	17.4	151	23.3	181	28.8	211	42.9
80	-	-	85	5.2	110	12.3	130	17.2	150	23	180	28.4	210	42.5
82	-	-	-	-	109	12	129	16.9	149	22.7	179	28.1	209	42.1
84	-	-	-	-	108	11.8	128	16.6	148	22.4	178	27.8	208	41.7
86	-	-	-	-	107	11.6	127	16.4	147	22.1	177	27.4	207	41.3
88	-	-	-	-	106	11.4	126	16.1	146	21.8	176	27.1	206	40.9
90	-	-	-	-	105	11.1	125	15.9	145	21.5	175	26.8	205	40.5
92	-	-	-	-	104	10.9	124	15.6	144	21.2	174	26.5	204	40.1
94	-	-	-	-	103	10.7	123	15.4	143	20.9	173	26.1	203	39.7
96	-	-	-	-	102	10.5	122	15.1	142	20.6	172	25.8	202	39.3
98	-	-	-	-	101	10.3	121	14.9	141	20.3	171	25.5	201	38.9
100	-	-	-	-	100	10.1	120	14.6	140	20.1	170	25.2	200	38.5
102	-	-	-	-	99	9.9	119	14.4	139	19.8	169	24.9	199	38.1
104	-	-	-	-	98	9.7	118	14.1	138	19.5	168	24.5	198	37.7
106	-	-	-	-	97	9.5	117	13.9	137	19.2	167	24.2	197	37.3
108	-	-	-	-	96	9.3	116	13.7	136	18.9	166	23.9	196	37
110	-	-	-	-	95	9.1	115	13.4	135	18.6	165	23.6	195	36.6
112	-	-	-	-	94	8.9	114	13.2	134	18.3	164	23.3	194	36.2
114	-	-	-	-	93	8.7	113	13	133	18.1	163	23	193	35.8
116	-	-	-	-	92	8.5	112	12.7	132	17.8	162	22.7	192	35.4
118	-	-	-	-	91	8.3	111	12.5	131	17.5	161	22.4	191	35.1
120	-	-	-	-	90	8.2	110	12.3	130	17.2	160	22.1	190	34.7

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

k_{H,2} for SA<u>I - Full or partial nailing - F2</u>

,-		Total nu	ımber of nails		(H2			
	Blank	in th	he header	1502				
		Full nailing	Partial nailing	Full nailing	Partial nailing			
	200	6	4	3.6	2.5			
 	250	10	4	7.5	2.4			
1 st Bblank model	300	15	8	13.5	7.6			
ank	340	15	8	13.5	7.6			
Bbla	380	18	10	19.2	12.1			
1st	440	23	12	28.2	15			
	500	28	14	41.3	19.6			
2 nd blank model	200	4	-	2.5	-			
2' bla mo	250	6	-	4.7	-			

Page 181 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

 $n_{j,ef,1}$ and $n_{j,ef,2}$ for SAI - Full or partial nailing - F1 or F2

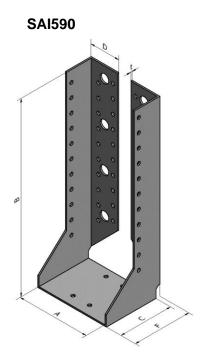
,,,.	J , • · · , =	Total nur	nber of nails		F1		F2	
		in tl	he joist		F1	12		
	Blank	Full	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing	
		nailing	J	n _{J.ef.1}	n _{J.ef.1}	n _{J.ef.2}	n _{J.ef.2}	
	200	4	4	1.84	1.84	1.7	1.7	
<u> </u>	250	6	4	1.91	1.6	1.84	1.51	
JOE	300	10	6	5.95	3.77	5.39	3.31	
1st Blank model	340	10	6	5.95	5.69	5.39	4.4	
B	380	12	6	8.5	4.75	7.52	3.92	
1st	440	14	8	11.22	7.21	9.74	5.8	
	500	18	8	16.75	10.46	14.27	8.1	
nd Rel	380	4	-	1.84	-	1.7	-	
2nd blank model	440	6	-	1.91	-	1.84	-	

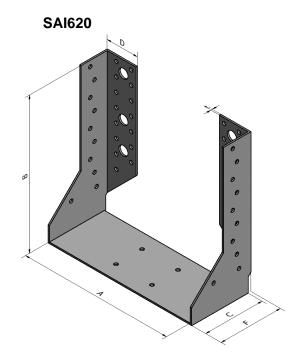
SAI joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in Annex B3 for connection to column and above coefficients, valid for partial nailing, apply.

Characteristic capacity for SAI with Square twist nails - Full nailing - F1 - timber to timber

	Model	Dim	ensions ¹⁾	Total no. of squa twist nails 3,75x mm		Characteristic capacity ²⁾
		Α	В	n _H	nJ	R _{1,k}
_	380	90	145	20	12	20.3
əpc	380	100	140	20	12	20.3
W Mc	500	91	204.5	32	18	28
lank	500	100	200	32	18	28
1 st blank Model	500	125	187.5	32	16	28
_	500	150	175	32	16	28

¹⁾ For further dimensions see the section Dimensions of this annex


²⁾ The characteristic capacity is given for Timber Grade C24 (characteristic density of 350 kg/m³)


D38 SAI590, SAI620 Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAI	Steel ref 1 - Steel ref 2	-

Dimensions

Dimensions [mm]								Holes					
Dimensions [mm]						Header				Joist			
	Α	В	C	D	F	t	Qty	Size	Qty	Size	Qty	Size	
590	200	(590-A)/2	78	43	84	1.5 - 2	30	Ø5	6	Ø13	20	Ø5	
620-a	90-100	(620-A)/2	75	40	81	1.5 - 2	40	Ø5	8	Ø13	22	Ø5	
620-b	101-200	(620-A)/2	75	40	77	1.5 - 2	40	Ø5	8	Ø13	22	Ø5	
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-	

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger SAI590 - SAI620 - Full nailing - F1

See SAE590, SAE620 and SAE690 Joist hanger

k_{H,2} for SAI590 - SAI620 - Full or partial nailing - F2

See SAE590, SAE620 and SAE690 Joist hanger

 $n_{j,\text{ef},1}$ and $n_{j,\text{ef},2}$ for SAI590 - SAI620 - Full or partial nailing - F1 or F2

See SAE590, SAE620 and SAE690 Joist hanger

SAI joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in Annex B3 for connection to column and above coefficients, valid for partial nailing, apply.

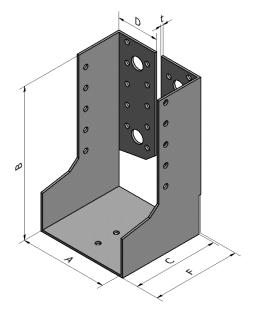
Page 183 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Characteristic capacity for SAI590 - SAI620 with Square twist nails - Full nailing - F1 - timber to timber

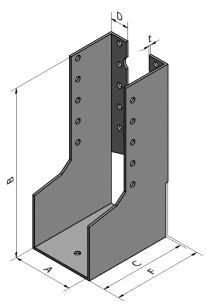
Model	Dim	ensions¹)	Total no. twist nails 3	Characteristic capacity ²⁾	
	Α	В	n _H	nJ	R _{1,k}
590	200	195	30	20	30
620	91	264.5	40	22	35
620	100	260	40	22	35
620	116	252	40	22	35
620	125	247.5	40	22	35
620	150	235	40	22	35

¹⁾ For futher dimensions see the section Dimensions of this annex

²⁾ The characteristic capacity is given for Timber Grade C24 (characteristic density of 350 kg/m³)


D39 SAIL Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAIL	Steel ref 1 - Steel ref 2	-


Dimensions

			Dimono	ione I	mml					Н	oles		
	Blank		Dimens	ions į	mmj			Header				Joist	
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
<u> </u>	300	80-120	(300-A)/2	84	41.5	86	2	16	Ø5	4	Ø13	8	Ø5
Blank model	340	80-120	(340-A)/2	84	41.5	86	2	20	Ø5	4	Ø13	10	Ø5
, Y	380	80-160	(380-A)/2	84	41.5	86	2	20	Ø5	4	Ø13	10	Ø5
t Bla	440	80-160	(440-A)/2	84	41.5	86	2	26	Ø5	4	Ø13	13	Ø5
1st	500	80-160	(500-A)/2	84	41.5	86	2	32	Ø5	6	Ø13	16	Ø5
_	300	38-79	(300-A)/2	84	18.5	86	2	8	Ø5	-	-	10	Ø5
node	340	38-79	(340-A)/2	84	18.5	86	2	10	Ø5	-	-	10	Ø5
ank n	380	38-79	(380-A)/2	84	18.5	86	2	10	Ø5	-	-	12	Ø5
2 nd blank model	440	38-79	(440-A)/2	84	18.5	86	2	12	Ø5	-	-	14	Ø5
7	500	38-79	(500-A)/2	84	18.5	86	2	16	Ø5	-	-	18	Ø5
	Permitted deviation	-	-	±1.0	±1.0	±1.0	1	-	-	-	-	-	-

1st blank model

2nd blank model

Page 185 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger SAIL 1st blank model - Full nailing - F1

k _{H,1} for Jo									T	
	3	00	3	40	3	80	4	4 0	5	00
	n _H	nJ								
	16	9	16	10	20	12	26	15	32	18
Α	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}
80	110	21.2	130	29.5	150	39.2	180	56.4	210	76.7
82	109	20.8	129	29.0	149	38.7	179	55.8	209	76.0
84	108	20.4	128	28.6	148	38.2	178	55.2	208	75.3
86	107	20.0	127	28.1	147	37.7	177	54.6	207	74.6
88	106	19.6	126	27.7	146	37.2	176	54.0	206	73.9
90	105	19.2	125	27.2	145	36.7	175	53.4	205	73.2
92	104	18.9	124	26.8	144	36.2	174	52.8	204	72.5
94	103	18.5	123	26.3	143	35.7	173	52.2	203	71.7
96	102	18.1	122	25.9	142	35.2	172	51.6	202	71.0
98	101	17.7	121	25.4	141	34.7	171	51.0	201	70.3
100	100	17.4	120	25.0	140	34.3	170	50.4	200	69.6
102	99	17.0	119	24.5	139	33.8	169	49.8	199	68.9
104	98	16.6	118	24.1	138	33.3	168	49.2	198	68.2
106	97	16.3	117	23.7	137	32.8	167	48.6	197	67.5
108	96	15.9	116	23.2	136	32.3	166	48.0	196	66.9
110	95	15.5	115	22.8	135	31.9	165	47.5	195	66.2
112	94	15,2	114	22,4	134	31.4	164	46.9	194	65.5
114	93	14,8	113	22,0	133	30.9	163	46.3	193	64.8
116	92	14,5	112	21,6	132	30.4	162	45.7	192	64.1
118	91	14,2	111	21,1	131	30.0	161	45.1	191	63.4
120	90	13,8	110	20,7	130	29.5	160	44.6	190	62.7
122	-	-	-	-	129	29.0	159	44.0	189	62.1
124	-	-	-	-	128	28.6	158	43.4	188	61.4
126	-	-	-	-	127	28.1	157	42.9	187	60.7
128	-	-	-	-	126	27.7	156	42.3	186	60.1
130	-	-	-	-	125	27.2	155	41.7	185	59.4
132	-	-	-	-	124	26.8	154	41.2	184	58.7
134	-	-	-	-	123	26.3	153	40.6	183	58.1
136	-	-	-	-	122	25.9	152	40.1	182	57.4
138	-	-	-	-	121	25.4	151	39.5	181	56.8
140	-	-	-	-	120	25.0	150	39.0	180	56.1
142	-	-	-	-	119	24.5	149	38.4	179	55.5
144	-	-	-	-	118	24.1	148	37.9	178	54.8
146	-	-	-	-	117	23.7	147	37.4	177	54.2
148	-	-	-	-	116	23.2	146	36.8	176	53.6
150	-	-	-	-	115	22.8	145	36.3	175	52.9
152	-	-	-	-	114	22.4	144	35.8	174	52.3
154	-	-	-	-	113	22.0	143	35.3	173	51.7
156	-	-	-	-	112	21.6	142	34.7	172	51.0
158	-	-	-	-	111	21.1	141	34.2	171	50.4
160	-	-	-	-	110	20.7	140	33.7	170	49.8
In the cas	o of int	formodia	sto wid	ا ما ۱	on ho	aalaulat	od by	lingar in	tornolo	4:00

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

k_{H,1} for Joist Hanger SAIL 1st blank model - Partial nailing - F1

k _{H,1} for Jois	_		1 st blank model - Partial na							
	3	00	3	40	3	80	4	40	5	00
	n _H	nJ	nн	nJ	nн	nJ	nн	nJ	n _H	nJ
	8	4	10	6	10	6	12	7	16	8
Α	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1
80	110	13.0	130	17.6	150	22.4	180	31.8	210	46.7
82	109	12.8	129	17.4	149	22.1	179	31.5	209	46.3
84	108	12.6	128	17.1	148	21.9	178	31.2	208	45.9
86	107	12.4	127	16.9	147	21.6	177	30.9	207	45.6
88	106	12.2	126	16.7	146	21.4	176	30.7	206	45.2
90	105	12.0	125	16.5	145	21.1	175	30.4	205	44.9
92	104	11.8	124	16.3	144	20.9	174	30.1	204	44.5
94	103	11.6	123	16.0	143	20.6	173	29.8	203	44.2
96	102	11.4	122	15.8	142	20.4	172	29.6	202	43.8
98	101	11.2	121	15.6	141	20.2	171	29.3	201	43.5
100	100	11.1	120	15.4	140	19.9	170	29.0	200	43.1
102	99	10.9	119	15.2	139	19.7	169	28.8	199	42.8
104	98	10.7	118	15.0	138	19.4	168	28.5	198	42.4
106	97	10.5	117	14.8	137	19.2	167	28.2	197	42.1
108	96	10.3	116	14.6	136	19.0	166	28.0	196	41.7
110	95	10.2	115	14.4	135	18.7	165	27.7	195	41.4
112	-	-	,		134	18.5	164	27.4	194	41.1
114	-	-	-	-	133	18.3	163	27.2	193	40.7
116	-	-	-	-	132	18.0	162	26.9	192	40.4
118	-	-	-	-	131	17.8	161	26.6	191	40.1
120	-	-	-	-	130	17.6	160	26.4	190	39.7
122	-	-	-	-	129	17.4	159	26.1	189	39.4
124	-	-	-	-	128	17.1	158	25.9	188	39.1
126	-	-	ń	-	127	16.9	157	25.6	187	38.7
128	-	-	-	-	126	16.7	156	25.4	186	38.4
130	-	-	-	-	125	16.5	155	25.1	185	38.1
132	-	-	-	-	124	16.3	154	24.9	184	37.8
134	-	-	-	-	123	16.0	153	24.6	183	37.5
136	-	-	-	-	122	15.8	152	24.4	182	37.1
138	-	-	-	-	121	15.6	151	24.2	181	36.8
140	-	-	-	-	120	15.4	150	23.9	180	36.5
142	-	-	-	-	119	15.2	149	23.7	179	36.2
144	-	-	-	-	118	15.0	148	23.5	178	35.9
146	-	-	-	-	117	14.8	147	23.2	177	35.6
148	-	-	-	-	116	14.6	146	23.0	176	35.3
150	-	-	-	-	115	14.4	145	22.8	175	35.0
152	-	-	-	-	114	14.2	144	22.5	174	34.7
154	-	-	-	-	113	14.0	143	22.3	173	34.4
156	-	-	-	-	112	13.8	142	22.1	172	34.1
158	-	-	-	-	111	13.6	141	21.9	171	33.8
160	-	-	-	-	110	13.5	140	21.7	170	33.5
In the case of		1' - 1 -	1 (1	1						

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 187 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

k_{H,1} for Joist Hanger SAIL 2nd blank model - Full nailing - F1

KH,1 IOI	JOIST Hallger SAIL 2 " blank model - Full halling - F1									
	3	00	34	10	38	30	44	10	50	00
	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ
	8	8	10	10	10	10	12	13	16	16
Α	В	k H,1	В	k H,1	В	k H,1	В	k H,1	В	k H,1
38	131	16,6	151	21,8	171	27,1	201	36,6	231	49,1
40	130	16,4	150	21,6	170	26,8	200	36,2	230	48,7
42	129	16,2	149	21,3	169	26,5	199	35,9	229	48,3
44	128	15,9	148	21,1	168	26,3	198	35,6	228	47,9
46	127	15,7	147	20,8	167	26,0	197	35,3	227	47,6
48	126	15,5	146	20,5	166	25,7	196	35,0	226	47,2
50	125	15,3	145	20,3	165	25,5	195	34,7	225	46,8
52	124	15,1	144	20,0	164	25,2	194	34,4	224	46,4
54	123	14,9	143	19,8	163	25,0	193	34,1	223	46,0
56	122	14,7	142	19,5	162	24,7	192	33,8	222	45,7
58	121	14,4	141	19,3	161	24,4	191	33,5	221	45,3
60	120	14,2	140	19,0	160	24,2	190	33,2	220	44,9
62	119	14,0	139	18,8	159	23,9	189	32,9	219	44,5
64	118	13,8	138	18,5	158	23,6	188	32,6	218	44,1
66	117	13,6	137	18,3	157	23,4	187	32,3	217	43,8
68	116	13,4	136	18,0	156	23,1	186	32,0	216	43,4
70	115	13,2	135	17,8	155	22,9	185	31,7	215	43,0
72	114	13,0	134	17,5	154	22,6	184	31,4	214	42,6
74	113	12,8	133	17,3	153	22,3	183	31,1	213	42,3
76	112	12,5	132	17,0	152	22,1	182	30,8	212	41,9
78	111	12,3	131	16,8	151	21,8	181	30,5	211	41,5

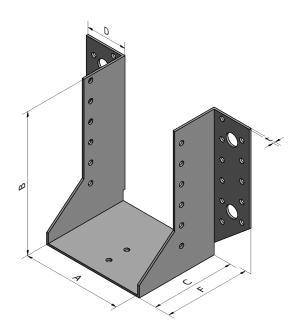
 $k_{\text{H},2}$ for SAIL - Full or partial nailing - F2

		Total num	nber of nails	le.	
	Blank	in the	header	K	H2
		Full nailing	Partial nailing	Full nailing	Partial nailing
<u> </u>	300	16	8	16.4	7.9
1st blank model	340	20	10	23.8	11.4
보	380	20	10	23.8	11.4
pla	440	26	14	37.6	21.9
1 st	500	32	16	54.5	25.9
Θ	300	8	-	7.8	-
pou	340	10	-	11.4	-
Ā	380	10	-	11.4	-
2 nd blank model	440	12	-	15.8	-
20	500	16	-	26.5	-

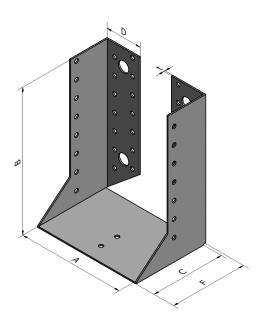
 $n_{j,ef,1}$ and $n_{j,ef,2}$ for SAIL - Full or partial nailing - F1 or F2

,,ei, i alia i	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		partial fialling	31 . 2				
			mber of nails		F1		F2	
		ın t	he joist					
	Blank	Full	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing	
	nailing			n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}	
<u>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </u>	300	8	4	3.83	2.59	3.57	2.23	
pou	340	10	6	6.15	4.22	5.54	3.61	
ş	380	10	6	6.15	4.22	5.54	3.61	
1st blank model	440	13	8	10.13	6.45	8.81	5.38	
18	500	16	8	14.31	7.78	12.2	6.08	
<u> </u>	300	10	-	6.15	-	5.54	-	
poc	340	10	-	6.15	-	5.54	-	
녿	380	12	-	8.76	-	7.69	-	
2 nd blank model	440	14	-	11.52	-	9.93	-	
2	500	18	-	17.08	-	14.46	-	

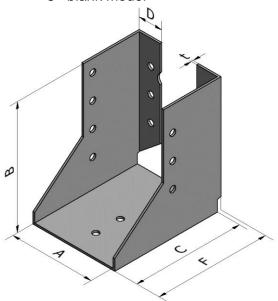
SAIL joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in <u>Annex B3</u> for connection to column and above coefficients, valid for partial nailing, apply.


D40 SAIX Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAIX	Steel ref 2 or S250GD + ZM310	SAEX (external flanges) SAIX (internal flanges)


Dimensions

			Dimens	ione [mm1					Н	oles		
	Blank		Dillielis	ions [Hea	der		Jo	ist
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
	250	24-80	(250-A)/2	84	41.5	86	1.5	12	Ø5	2	Ø11	7	Ø5
lapo	300	24-80	(300-A)/2	84	41.5	86	1.5	18	Ø5	4	Ø13	10	Ø5
1 st blank model	340	24-80	(340-A)/2	84	41.5	86	1.5	22	Ø5	4	Ø13	12	Ø5
lank	380	24-120	(380-A)/2	84	41.5	86	1.5	22	Ø5	4	Ø13	12	Ø5
1 st b	440	24-120	(440-A)/2	84	41.5	86	1.5	28	Ø5	4	Ø13	15	Ø5
	500	24-120	(500-A)/2	84	41.5	86	1.5	34	Ø5	6	Ø13	18	Ø5
nk	380	80-120	(380-A)/2	84	41.5	87	1.5	22	Ø5	4	Ø13	12	Ø5
2 nd blank model	440	80-120	(440-A)/2	84	41.5	87	1.5	28	Ø5	4	Ø13	15	Ø5
2 ^{nc}	500	80-120	(500-A)/2	84	41.5	87	1.5	34	Ø5	6	Ø13	18	Ø5
	250	38-80	(250-A)/2	84	18.5	87	1.5	6	Ø5	-	-	7	Ø5
odel	300	38-80	(300-A)/2	84	18.5	87	1.5	10	Ø5	-	-	9	Ø5
, mc	340	38-80	(340-A)/2	84	18.5	87	1.5	12	Ø5	-	-	11	Ø5
3r ^d blank model	380	38-79	(380-A)/2	84	18.5	87	1.5	12	Ø5	-	-	11	Ø5
3rd k	440	38-79	(440-A)/2	84	18.5	87	1.5	14	Ø5	-	-	15	Ø5
	500	38-79	(500-A)/2	84	18.5	87	1.5	18	Ø5	-	-	18	Ø5
	Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-


1st blank model

2nd blank model

3rd blank model

Parameters have to be used with equation in Annex C.

k_{H,1} for Joist Hanger SAIX - Full nailing - F1

For 1st blank model - See SAE Joist hanger

For 2nd blank model

	3	80	440		5	00
	nн	nJ	nн	nJ	nн	nJ
	22	12	28	15	34	18
Α	В	k _{H,1}	В	k H,1	В	k H,1
80	150	38.9	180	56.1	210	76.4
82	149	38.4	179	55.5	209	75.7
84	148	37.9	178	54.9	208	75.0
86	147	37.4	177	54.3	207	74.2
88	146	36.9	176	53.6	206	73.5
90	145	36.4	175	53.0	205	72.8
92	144	35.9	174	52.4	204	72.1
94	143	35.4	173	51.8	203	71.3
96	142	34.9	172	51.2	202	70.6
98	141	34.4	171	50.6	201	69.9
100	140	33.9	170	50.0	200	69.2
102	139	33.4	169	49.4	199	68.5
104	138	32.9	168	48.8	198	67.8
106	137	32.4	167	48.2	197	67.1
108	136	31.9	166	47.6	196	66.4
110	135	31.4	165	47.0	195	65.7
112	134	30.9	164	46.4	194	65.0
114	133	30.5	163	45.8	193	64.3
116	132	30.0	162	45.2	192	63.6
118	131	29.5	161	44.7	191	62.9
120	130	29.0	160	44.1	190	62.3

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

For 3rd blank model

	2	50	3	00	3	40	3	80	4	40	5	00
	n _H	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ
	6	4	10	6	12	6	12	6	14	8	18	10
Α	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k н,1	В	k _{H,1}
38	106	10.0	131	17.0	151	22.1	171	28.0	201	37.4	231	49.5
40	105	9.9	130	16.8	150	21.9	170	27.7	200	37.1	230	49.1
42	104	9.7	129	16.5	149	21.6	169	27.4	199	36.7	229	48.7
44	103	9.5	128	16.3	148	21.3	168	27.1	198	36.4	228	48.3
46	102	9.4	127	16.0	147	21.0	167	26.8	197	36.1	227	47.8
48	101	9.2	126	15.8	146	20.7	166	26.5	196	35.7	226	47.4
50	100	9.0	125	15.6	145	20.5	165	26.2	195	35.4	225	47.0
52	99	8.8	124	15.3	144	20.2	164	25.9	194	35.1	224	46.6
54	98	8.7	123	15.1	143	19.9	163	25.6	193	34.7	223	46.2
56	97	8.5	122	14.8	142	19.7	162	25.3	192	34.4	222	45.8
58	96	8.4	121	14.6	141	19.4	161	25.0	191	34.1	221	45.4
60	95	8.2	120	14.4	140	19.1	160	24.7	190	33.7	220	45.1
62	94	8.0	119	14.1	139	18.8	159	24.4	189	33.4	219	44.7
64	93	7.9	118	13.9	138	18.6	158	24.1	188	33.1	218	44.3
66	92	7.7	117	13.7	137	18.3	157	23.9	187	32.8	217	43.9
68	91	7.5	116	13.4	136	18.0	156	23.6	186	32.4	216	43.5
70	90	7.4	115	13.2	135	17.8	155	23.3	185	32.1	215	43.1
72	89	7.2	114	13.0	134	17.5	154	23.0	184	31.8	214	42.7
74	88	7.1	113	12.8	133	17.3	153	22.7	183	31.4	213	42.3
76	87	6.9	112	12.5	132	17.0	152	22.4	182	31.1	212	41.9
78	86	6.7	111	12.3	131	16.7	151	22.1	181	30.8	211	41.5
80	85	6.6	110	12.1	130	16.5	-	-	-	-	-	-

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

k_{H,1} **for Joist Hanger SAIX - Partial nailing - F1** For 1st blank model - See SAE Joist hanger

For 2nd blank model

	3	80	440		5	00
	n _H	nJ	n_H	nJ	n_H	nJ
	22	12	28	15	34	18
А	В	k H,1	В	k H,1	В	k _{H,1}
80	150	23.8	180	32.7	210	47.8
82	149	23.5	179	32.3	209	47.4
84	148	23.2	178	32.0	208	47.0
86	147	22.9	177	31.6	207	46.5
88	146	22.6	176	31.3	206	46.1
90	145	22.3	175	30.9	205	45.7
92	144	22.0	174	30.6	204	45.2
94	143	21.7	173	30.3	203	44.8
96	142	21.4	172	29.9	202	44.4
98	141	21.1	171	29.6	201	43.9
100	140	20.8	170	29.3	200	43.5
102	139	20.5	169	28.9	199	43.1
104	138	20.2	168	28.6	198	42.7
106	137	19.9	167	28.3	197	42.2
108	136	19.6	166	27.9	196	41.8
110	135	19.3	165	27.6	195	41.4
112	134	19.1	164	27.3	194	41.0
114	133	18.8	163	26.9	193	40.5
116	132	18.5	162	26.6	192	40.1
118	131	18.2	161	26.3	191	39.7
120	130	17.9	160	26.0	190	39.3

For 3rd Blank model - No partial nailing capacities

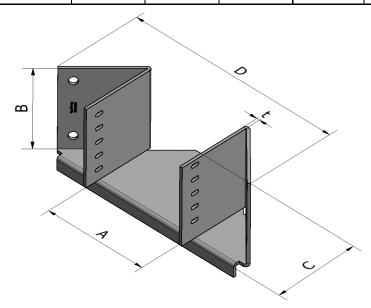
 $k_{H,2}$ for SAIX - Full or partial nailing - F2

,-		Total nun	nber of nails		l.					
	Blank	in the	e header		k _{H2}					
		Full nailing	Partial nailing	Full nailing	Partial nailing					
_	250									
1st blank model	300									
Ē	340		200 SAE 10	ist bangar						
lan	380		See SAE Jo	ist nanger						
1st b	440									
,	500									
Å −	380	22	12	27.4	15.4					
2 nd blank model	440	28	14	41.8	19.9					
2 ^{nc}	500	34	18	59.3	32.1					
	250	6	-	4.7	-					
ode	300	10	-	11.1	-					
Ē	340	12	-	15.4	-					
3 [ા] blank model	380	12	-	15.4	-					
3 rd b	440	14	-	20.3	-					
(,)	500	18	-	32.1	-					

Page 193 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

 $n_{j,ef,1}$ and $n_{j,ef,2}$ for SAIX - Full or partial nailing - F1 or F2

rij,er, i dild i	J ,,-		nber of nails		E4		F2				
		in t	ne joist		F1		ΓZ				
	Blank	Full	Partial nailing	Full nailing	Partial nailing	Full nailing	Partial nailing				
		nailing		n _{J,ef,1}	n _{J,ef,1}	n _{J,ef,2}	n _{J,ef,2}				
	250										
opc	300										
E V	340		One OAE Initial houses								
1 st blank model	380	See SAE Joist hanger									
l st b	440										
`	500										
nk -	380	12	6	8.76	4.91	7.69	4.00				
2 nd blank model	440	15	8	12.92	7.59	11.06	5.99				
2 nd	500	18	10	17.08	10.69	14.46	8.21				
	250	7	4	2.84	2.13	2.69	1.92				
ode	300	9	6	4.94	3.51	4.52	3.13				
E ×	340	11	6	7.43	5.12	6.6	4.12				
lan	380	11	6	7.43	4.56	6.6	3.81				
3 rd blank model	440	15	8	12.92	7.96	11.06	6.16				
(-)	500	18	10	17.08	10.69	14.46	8.21				


SAIX joist hangers are warranted for an installation on timber column. The partial nail pattern that applies then is the one described in <u>Annex B3</u> for connection to column and above coefficients, valid for partial nailing, apply.

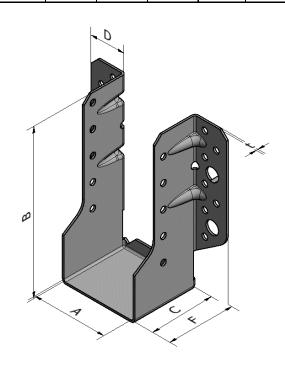
D41 SAMI/4X Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SAMI/4X	Steel ref 1 - Steel ref 2	-

Dimensions

				_			Holes		
Blank		Dir	nensions [m	Joist Header					
	Α	В	С	D	t	Qty	Size	Qty	Size
SAMI/4X	76-150	116	121	310	4	10	Ø5x12	4	Ø12
Permitted deviation	-	-	±1.0	±1.0	-	-	-	-	-

Characteristic capacity for SAMI/4X - F1 - timber to timber


Model		Fasteners	Characteristic capacity [kN] - C24			
	n _H	nJ	R _{1,k}			
SAMI/4X	4 Ø10	10 CNA4.0x35	31.3			

D42 SBE Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SBE	Steel ref 1 - Steel ref 2	-

Dimensions

		Dim	ensions	[mm]					Н	loles		
Blank		Dill	. []		Header Joist Qty Size Qty Size Qty Size 12 Ø5 2 Ø11 6 Ø5 12 Ø5 2 Ø11 8 Ø5 14 Ø5 4 Ø11 10 Ø5 18 Ø5 4 Ø11 12 Ø5 22 Ø5 4 Ø11 14 Ø5		ist					
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
230	32-65	(230-A)/2	52.5	29	54	1.5	12	Ø5	2	Ø11	6	Ø5
260	32-71	(260-A)/2	52.5	29	54	1.5	12	Ø5	2	Ø11	8	Ø5
320	32-81	(320-A)/2	52.5	29	54	1.5	14	Ø5	4	Ø11	10	Ø5
380	32-101	(380-A)/2	52.5	29	54	1.5	18	Ø5	4	Ø11	12	Ø5
440	32-121	(440-A)/2	52.5	29	54	1.5	22	Ø5	4	Ø11	14	Ø5
500	32-141	(500-A)/2	52.5	29	54	1.5	26	Ø5	4	Ø11	16	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C

k_{H,1} for Joist Hanger SBE - Full nailing - F1

K _{H,1} for Jo		230		60		20	3	80	4	40	į	500
	nΗ	nJ	nH	nJ	nH	nJ	nH	nJ	nΗ	nJ	nН	nJ
	12	6	12	8	14	10	18	12	22	14	26	16
Α	В	kH,1	В	kH,1	В	kH,1	В	kH,1	В	kH,1	В	kH,1
32	99	19.4	114	24.1	144	37.2	174	56.1	204	78.9	234	104.4
36	97	18.6	112	23.3	142	36.3	172	54.9	202	77.5	232	102.7
40	95	17.8	110	22.5	140	35.4	170	53.7	200	76.1	230	101.1
44	93	17.0	108	21.7	138	34.4	168	52.5	198	74.6	228	99.4
48	91	16.3	106	20.9	136	33.5	166	51.4	196	73.2	226	97.8
52	89	15.5	104	20.1	134	32.6	164	50.2	194	71.8	224	96.2
56	87	14.8	102	19.4	132	31.7	162	49.0	192	70.4	222	94.6
60	85	14.0	100	18.6	130	30.8	160	47.9	190	69.0	220	92.9
64	83	13.3	98	17.8	128	29.9	158	46.8	188	67.6	218	91.3
65	83	13.1	98	17.7	128	29.6	158	46.5	188	67.3	218	90.9
68	-	-	96	17.1	126	29.0	156	45.6	186	66.3	216	89.7
71	-	-	95	16.5	125	28.3	155	44.8	185	65.2	215	88.5
75	-	-	-	-	123	27.4	153	43.6	183	63.9	213	86.9
76	-	-	-	-	122	27.2	152	43.4	182	63.5	212	86.5
80	-	-	-	-	120	26.3	150	42.2	180	62.2	210	85.0
81	-	-	-	-	120	26.1	150	42.0	180	61.8	210	84.6
85	-	-	-	-	-	-	148	40.9	178	60.5	208	83.0
89	-	-	-	-	-	-	146	39.8	176	59.1	206	81.4
93	-	-	-	-	-	-	144	38.7	174	57.8	204	79.9
97	-	-	-	-	-	-	142	37.6	172	56.5	202	78.3
100	-	-	-	-	-	-	140	36.774	170	55.5	200	77.2
101	-	-	-	-	-	-	139.5	36.507	170	55.1	200	76.8
105	-	-	-	-	-	-	-	-	168	53.8	198	75.2
109	-	-	-	-	-	-	-	-	166	52.5	196	73.7
113	-	-	-	-	-	-	-	-	164	51.2	194	72.2
117	-	-	-	-	-	-	-	-	162	50.0	192	70.7
121	-	-	-	-	-	-	-	-	160	48.7	190	69.2
125	-	-	-	-	-	-	-	-	-	-	188	67.7
129	-	-	-	-	-	-	-	-	-	-	186	66.3
133	-	-	-	-	-	-	-	-	-	-	184	64.8
137	-	-	-	-	-	-	-	-	-	-	182	63.3
141	-	-	-	-	-	-	-	-	-	-	180	61.9

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

Page 197 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

k_{H,1} for Joist Hanger SBE - Partial nailing - F1

KH,1 TOT JOIS	1							.00				•
		230		60		20		80	44	l	50	
	nH	nJ	nH	nJ	nH	nJ	nH	nJ	nH	nJ	nH	nJ
	8	4	8	4	10	6	12	6	14	8	16	8
Α	В	kH,1	В	kH,1	В	kH,1	В	kH,1	В	kH,1	Н	kH,1
32	99	14.0	114	18.0	144	27.0	174	39.6	204.0	52.4	234	69.1
36	97	13.4	112	17.4	142	26.3	172	38.7	202.0	51.5	232	68.0
40	95	12.8	110	16.8	140	25.6	170	37.9	200.0	50.6	230	66.9
44	93	12.3	108	16.2	138	24.9	168	37.0	198.0	49.6	228	65.9
48	91	11.7	106	15.6	136	24.2	166	36.2	196.0	48.7	226	64.8
52	89	11.2	104	15.1	134	23.5	164	35.4	194.0	47.8	224	63.7
56	87	10.7	102	14.5	132	22.9	162	34.6	192.0	46.8	222.0	62.7
60	85	10.1	100	13.9	130	22.2	160	33.8	190.0	45.9	220	61.6
64	83	9.6	98	13.4	128	21.5	158	33.0	188.0	45.0	218.0	60.6
65	83	9.5	98	13.2	128	21.4	158	32.8	187.5	44.8	217.5	60.3
68	-	-	96	12.8	126	20.9	156	32.2	186.0	44.1	216	59.5
71	-	-	95	12.4	125	20.4	155	31.6	184.5	43.4	215	58.8
75	-	-	-	-	123	19.7	153	30.8	182.5	42.5	212.5	57.7
76	-	-	-	-	122	19.6	152	30.6	182.0	42.3	212.0	57.5
80	-	-	-	-	120	18.9	150	29.8	180.0	41.4	210.0	56.4
81	-	-	-	-	120	18.8	150	29.6	179.5	41.2	209.5	56.2
85	-	-	-	-	-	-	148	28.8	177.5	40.3	207.5	55.1
89	-	-	-	-	-	-	146	28.0	175.5	39.4	206	54.1
93	-	-	-	-	-	-	144	27.3	173.5	38.5	203.5	53.1
97	-	-	-	-	-	-	142	26.5	171.5	37.6	201.5	52.1
100	-	-	-	-	-	-	140	25.946	170.0	37.0	200.0	51.3
101	-	-	-	-	-	-	139.5	25.759	169.5	36.8	199.5	51.1
105	-	-	-	-	-	-	-	-	167.5	35.9	197.5	50.1
109	-	-	-	-	-	-	-	-	165.5	35.1	196	49.1
113	-	-	-	-	-	-	-	-	163.5	34.2	194	48.1
117	-	-	-	-	-	-	-	-	161.5	33.4	192	47.1
121	-	-	-	-	-	-	-	-	159.5	32.6	190	46.2
125	-	-	-	-	-	-	-	-	-	-	188	45.2
129	-	-	-	-	-	-	_	-	-	-	186	44.2
133	-	-	-	-	-	-	_	-	-	-	184	43.3
137	_	-	-	-	-	-	-	-	-	-	182	42.3
141	_	-	_	_	_	_	_	_	_	_	180	41.4
	1						L					

In the case of intermediate width, $k_{\text{H},1}$ can be calculated by linear interpolation.

k_{H,2} for SBE - Full or partial nailing - F2

111,2		partial manning					
Blank		nber of nails header	k _{H2}				
	Full nailing	Partial nailing	Full nailing	Partial nailing			
230	12	8	15.3	10.3			
260	12	8	15.3	10.3			
320	14	10	19.2	15.2			
380	18	12	28.9	20.9			
440	22	14	40.4	27.6			
500	26	16	56.1	35.2			

 $n_{i,ef,1}$, $n_{i,ef,2}$ and $I_{p,fl}$ for SBE - Full or partial nailing - F1 or F2 or F3

	Total numb	er of nails	F1		F2	,		F3		
	in the	joist	Г		Г	4	F-3			
Blank	Full nailing	Partial nailing	nailing nailing nailing nailing		Partial nailing	Full nailing	Partial nailing			
	naming	naming			n _{J,ef,2}	n _{J,ef,2}	$I_{p,fl}$	$\mathbf{I}_{p,fl}$		
230	6	4	2.71	2.66	2.44	2.22	2485	1667		
260	8	4	4.95	2.19	4.41	1.4	2933	2000		
320	10	6	7.74	5.36	6.62	4.04	5086	4000		
380	12	6	10.7	5.36	8.91	4.59	8156	7000		
440	14	8	13.7	8	11.21	6.59	15018	11200		
500	16	8	16	8	13.48	6.23	25108	16800		

Characteristic capacity for SBE - with connector screw SSH/SSF

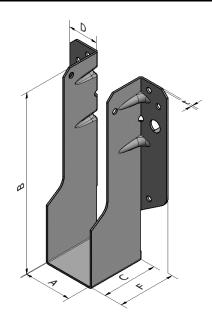
			Produ	ct capac	ities - Ti	mber to 1	Timber - I	_arge cor	nector s	crew			
		Fastener	S		Characteristic capacities - Timber C24								
References		Header	J	oist		R	1.k			R	2.k		
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
SBE230	2	SSH10.0x40 ⁽¹⁾	6	CNA*	6,5	6,8	7,2	7,2	6,8	6,9	7,2	7,2	
SBE230	2	SSH10.0x50 ⁽¹⁾	6	CNA*	7,8	8,2	8,9	9,1	7,8	8,6	9,1	9,2	
SBE260	2	SSH10.0x40 ⁽¹⁾	8	CNA*	7,2	7,2	7,2	7,2	7,2	7,2	7,2	7,2	
SBE260	2	SSH10.0x50 ⁽¹⁾	8	CNA*	9,2	9,4	9,4	9,4	9,2	9,4	9,4	9,4	
SBE320	2	SSH10.0x40 ⁽¹⁾	10	CNA*	6,7	6,7	6,7	6,7	6,7	6,7	6,7	6,7	
SBE320	2	SSH10.0x50 ⁽¹⁾	10	CNA*	8,8	8,8	8,8	8,8	8,8	8,8	8,8	8,8	
SBE380	4	SSH10.0x40 ⁽¹⁾	12	CNA*	12,8	12,8	12,8	12,8	12,8	12,8	12,8	12,8	
SBE380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	15,7	16,4	16,8	16,8	15,7	16,5	16,8	16,8	
SBE440	4	SSH10.0x40 ⁽¹⁾	14	CNA*	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	
SBE440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	17,4	17,6	17,6	17,6	17,4	17,6	17,6	17,6	
SBE500	4	SSH10.0x40 ⁽¹⁾	16	CNA*	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	
SBE500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	17,6	17,6	17,6	17,6	17,6	17,6	17,6	17,6	

⁽¹⁾SSH can be replaced by SSF

			Produ	ct capac	ities - Ti	mber to 1	imber - I	_arge coi	nector s	crew			
		Fastener	S		Characteristic capacities - Timber C24								
References		Header	Joist			R	3.k			R	4.k		
	Qty	Туре	Qty	Туре	4.0x35	4.0x40	4.0x50	4.0x60	4.0x35	4.0x40	4.0x50	4.0x60	
SBE230	2	SSH10.0x40 ⁽¹⁾	6	CNA*	1,5	1,7	2,2	2,6	5,0	5,0	5,0	5,0	
SBE230	2	SSH10.0x50 ⁽¹⁾	6	CNA*	2,2	3,8	2,9	3,4	5,0	5,0	5,0	5,0	
SBE260	2	SSH10.0x40 ⁽¹⁾	8	CNA*	1,3	1,5	1,9	2,3	5,0	5,0	5,0	5,0	
SBE260	2	SSH10.0x50 ⁽¹⁾	8	CNA*	1,7	1,9	2,5	3,0	5,0	5,0	5,0	5,0	
SBE320	2	SSH10.0x40 ⁽¹⁾	10	CNA*	1,2	1,3	1,6	1,8	5,0	5,0	5,0	5,0	
SBE320	2	SSH10.0x50 ⁽¹⁾	10	CNA*	1,6	1,8	2,1	2,4	5,0	5,0	5,0	5,0	
SBE380	4	SSH10.0x40 ⁽¹⁾	12	CNA*	1,9	2,0	2,4	2,8	10,0	10,0	10,0	10,0	
SBE380	4	SSH10.0x50 ⁽¹⁾	12	CNA*	2,5	2,7	3,2	3,7	10,0	10,0	10,0	10,0	
SBE440	4	SSH10.0x40 ⁽¹⁾	14	CNA*	1,9	2,0	2,3	2,6	10,0	10,0	10,0	10,0	
SBE440	4	SSH10.0x50 ⁽¹⁾	14	CNA*	2,4	2,6	2,9	3,3	10,0	10,0	10,0	10,0	
SBE500	4	SSH10.0x40 ⁽¹⁾	16	CNA*	1,5	1,7	1,9	2,1	10,0	10,0	10,0	10,0	
SBE500	4	SSH10.0x50 ⁽¹⁾	16	CNA*	2,0	2,2	2,5	2,8	10,0	10,0	10,0	10,0	

⁽¹⁾SSH can be replaced by SSF

The user shall verify the transversal tension in timber, which is not included in these capacities.


^{*}Refer to *Characteristic Capacities* table columns for type of fasteners that can be used on the joist. Capacities vary depending on fastener type used.

D43 SBE45/168/TF Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SBE45/168/TF	Steel ref 1 - Steel ref 2	-

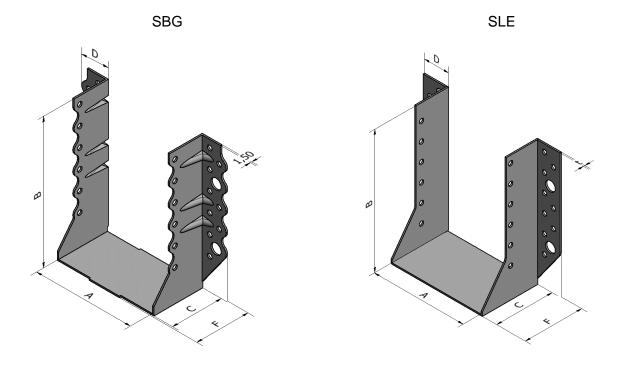
Dimensions

			Dimensio	ne Immi	1	Holes						
Blank			Hillensid	ַוווווון פווכ	ı	Header				Joist		
	Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
SBE45/168/TF	45	168	52.5	29	54	1.5	6	Ø5	2	Ø11	2	Ø5
Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-		-

Characteristic capacity for SBE45/168/TF - Full nailing - F1 - timber to timber

No. 1-1	Fasteners -	CNA4.0x35	Characteristic capacity [kN] - C24				
Model	n _H	nJ	R _{1,k}	R _{2,k}			
SBE45/165/TF	6	2	6.0	2.7			

To change the timber density instead of using the kdens factor use in this specific case:


Timber class	C18	C20	C22	C24
Factor	0.83	0.89	0.94	1.00

D44 SBG/SLE Joist hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SBG	Steel ref 1 - Steel ref 2	-
SLE	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimonoi	ana Ir	m m 1					Н	oles		
	Blank		Dimensi	ons ti	mmj				Hea	der		Joist	
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
	230	38-52	(230-A)/2	51.5	27	55	1.5	8	Ø5	2	Ø11	6	Ø5
	260	38-64	(260-A)/2	51.5	27	55	1.5	12	Ø5	2	Ø11	6	Ø5
CDC	320	38-80	(320-A)/2	51.5	27	55	1.5	16	Ø5	2	Ø11	10	Ø5
SBG	380	38-100	(380-A)/2	51.5	27	55	1.5	18	Ø5	4	Ø11	12	Ø5
	440	38-120	(440-A)/2	51.5	27	55	1.5	22	Ø5	4	Ø11	14	Ø5
	500	38-140	(500-A)/2	51.5	27	55	1.5	26	Ø5	4	Ø11	16	Ø5
	230	38-76	(230-A)/2	60	27	64	2	8	Ø5	2	Ø11	6	Ø5
	260	38-76	(260-A)/2	60	27	64	2	12	Ø5	2	Ø11	6	Ø5
SLE	320	38-100	(320-A)/2	60	27	64	2	16	Ø5	2	Ø11	10	Ø5
SLE	380	38-106	(380-A)/2	60	27	64	2	18	Ø5	4	Ø11	12	Ø5
	440	38-140	(440-A)/2	60	27	64	2	22	Ø5	4	Ø11	14	Ø5
	500	38-140	(500-A)/2	60	27	64	2	26	Ø5	4	Ø11	16	Ø5
	Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C

k_{H.1} for Joist Hanger SBG- SLE - Full nailing - F1

		230	2	60	3	20	3	80	4	40		500
	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ	nн	nJ
	8	6	12	6	16	10	18	12	22	14	26	16
Α	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}	В	k _{H,1}
36	97	15.7	112	24.8	142	39.1	172	56.4	202	78.3	232	105.8
40	95	15.1	110	23.9	140	38.1	170	55.2	200	76.9	230	104.1
44	93	14.4	108	23.1	138	37.0	168	54.0	198	75.4	228	102.4
48	91	13.8	106	22.2	136	35.9	166	52.8	196	74.0	226	100.7
52	89	13.2	104	21.4	134	34.9	164	51.6	194	72.6	224	99.0
56	87	12.5	102	20.6	132	33.8	162	50.4	192	71.1	222	97.4
60	85	11.9	100	19.7	130	32.8	160	49.2	190	69.7	220	95.7
64	83	11.3	98	18.9	128	31.8	158	48.0	188	68.3	218	94.0
68	81	10.7	96	18.1	126	30.8	156	46.9	186	66.9	216	92.4
72	79	10.1	94	17.4	124	29.8	154	45.7	184	65.5	214	90.7
76	77	9.6	92	16.6	122	28.8	152	44.5	182	64.1	212	89.1
80					120	27.8	150	43.4	180	62.7	210	87.5
90					115	25.4	145	40.5	175	59.3	205	83.4
100					110	23.0	140	37.7	170	56.0	200	79.4
110									165	52.7	195	75.5
120					_		_		160	49.4	190	71.6
130					_				155	46.3	185	67.8
140									150	43,2	180	64.0

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

For SBG: when t-t2 < 4 x d, don't use the holes in the joist, they are opposed. Then, the number of nails in the joist needs to be reduced in accordance with Eurocode 5, clause 8.3.1.1 (7) $k_{H,1}$ value can be used both for column and beam

k_{H,1} for Joist Hanger SBG-SLE - Partial nailing - F1

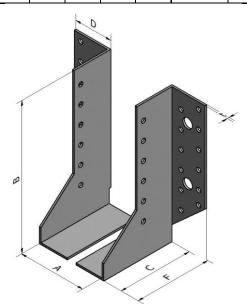
KH,1 101 0010		230		60	3	20	3	80	44	0	50	0
	n _H	nJ	n _H	nJ	n_H	nJ	n _H	nJ	n _H	nJ	n _H	nJ
	6	3	8	4	10	6	12	6	14	8	16	8
Α	В	k _{H,1}	В	k H,1	В	k H,1	В	k H,1	В	k H,1	Н	k _{H,1}
36	97	15.1	112	19.0	142	27.9	172	39.9	202	54.1	232	70.3
40	95	14.6	110	18.3	140	27.2	170	39.1	200	53.1	230	69.1
44	93	14.0	108	17.7	138	26.4	168	38.2	198	52.1	228	68.0
48	91	13.4	106	17.0	136	25.7	166	37.4	196	51.1	226	66.9
52	89	12.9	104	16.4	134	25.0	164	36.5	194	50.1	224	65.8
56	87	12.3	102	15.8	132	24.3	162	35.7	192	49.2	222	64.7
60	85	11.8	100	15.2	130	23.6	160	34.8	190	48.2	220	63.7
64	83	11.3	98	14.6	128	22.8	158	34.0	188	47.2	218	62.6
68	81	10.7	96	14.0	126	22.1	156	33.2	186	46.3	216	61.5
72	79	10.2	94	13.4	124	21.5	154	32.4	184	45.3	214	60.4
76	77	9.7	92	12.8	122	20.8	152	31.5	182	44.4	212	59.3
80					120	20.1	150	30.7	180	43.5	210	58.3
90					115	18.4	145	28.7	175	41.1	205	55.6
100					110	16.8	140	26.8	170	38.8	200	53.0
110									165	36.6	195	50.5
120									160	34.4	190	47.9
130									155	32.3	185	45.4
140									150	30.2	180	43.0

In the case of intermediate width, k_{H,1} can be calculated by linear interpolation.

For SBG: when t-t2 < 4 x d, don't use the holes in the joist, they are opposed. Then, the number of nails in the joist needs to be reduced in accordance with Eurocode 5, clause 8.3.1.1 (7) $k_{H,1}$ value can be used both for column and beam

k_{H,2} for SBG-SLE - Full or partial nailing - F2

Blank		ber of nails header	k _{H2}			
	Full nailing	Partial nailing	Full nailing	Partial nailing		
230	8	6	9.6	6.7		
260	12	8	15.9	10.7		
320	16	10	25.6	15.7		
380	18	12	29.9	21.7		
440	22	14	44.3	28.6		
500	26	16	58.1	36.4		


 $k_{\text{H,2}}$ value can be used both for column and beam

D45 SDED/G and BNS2P Joist hanger

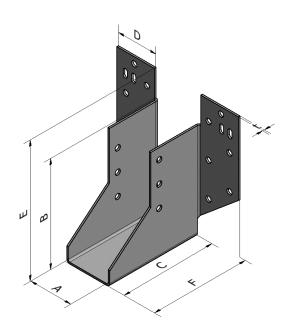
Product Name	Material reference acc. to clause II-1	Alternative Names
SDED/G	Steel ref 1 - Steel ref 2	-
BSN2P	Steel ref 1 - Steel ref 2	-

Dimensions

			Dimo	ncion	o Imm	.1		Holes					
	Blank		Dimensions [mm]						Head	der		Joist	
		Α	В	С	D	F	t	Qty	Size	Qty	Size	Qty	Size
	300	60-250	118	84	41.5	86	2	2 x 9	Ø5	2 x 2	Ø13	2 x 5	Ø5
ODED/O	340	60-250	138	84	41.5	86	2	2 x 11	Ø5	2 x 2	Ø13	2 x 6	Ø5
SDED/G	380	60-250	158	84	41.5	86	2	2 x 11	Ø5	2 x 2	Ø13	2 x 6	Ø5
	440	60-250	188	84	41.5	86	2	2 x 14	Ø5	2 x 2	Ø13	2 x 7	Ø5
	BSN2P30/98	60-200	98	70.5	39.5	72.5	2	2 x 8	Ø5	2 x 2	Ø9	2 x 4	Ø5
BSN2P	BSN2P30/152	60-250	152	78	42	80	2	2 x 12	Ø5	2 x 2	Ø11	2 x 12	Ø5
	BSN2P30/180	60-250	180	85	44	87	2	2 x 13	Ø5	2 x 3	Ø11	2 x 7	Ø5
	Permitted deviation	-	-	±1.0	±1.0	±1.0	-	-	-	-	-	-	-

Parameters have to be used with equation in Annex C.

 $k_{H,1}$ and $k_{H,2}$ - SDED/G BSN2P - Full Nailing

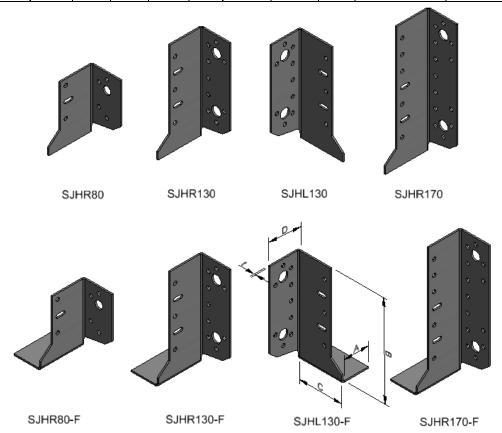

KH,1 and KH,2 - SDEDIG BSNZP - Full Naming									
	Blank	Coe	fficients						
	DIANK	k _{H,1}	k _{H,2}						
	300	24	19.9						
SDED/G	340	32.9	28.1						
SDED/G	380	38.6	28.1						
	440	55.9	42.9						
	BSN2P30/98	17.7	16.6						
BSN2P	BSN2P30/152	51.7	32.8						
	BSN2P30/180	73.4	37.6						

D46 SHT Strap hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
SHT	Steel ref 1 - Steel ref 2	-

Dimensions

			Dim		Holes						
Reference	Dimensions [mm]							Header		Joist	
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size
SHT115/38	38	90	83.5	35.9	115	85	1.5	12	Ø5	6	Ø5
Permitted deviation	-	-	-	-	-	-	-	-	-	-	-


Characteristic Capacities for SHT - Timber to Timber - C24

Hanger Type	Installation Configuration	Supporti	Fasteners - CNA 4.0 x 35 Supporting Timber Supported [kN] - C24 Fasteners Timber			
		Тор	Face	Fasteners	R _{1,k}	R _{2,k}
SHT115/38	Face Fix	-	12	6	9.60	6.69
SHT115/38	Wrap Over	2 8		6	9.40	5.82

D47 SJH Joist hanger

Dimensions

Γ	Dimensions [mm]							Holes						
	Model		В	С	D		Header		Header Joi		st			
		A	В	د	D		Qty	Size	Qty	Size	Qty	Size		
	SJH80	35.8	80	60	41.6	2	4	Ø5	1	Ø11	3	Ø5		
	SJH130	35.8	130	60	41.6	2	9	Ø5	2	Ø13	5	Ø5		
	SJH170	35.8	170	60	41.6	2	13	Ø5	2	Ø13	7	Ø5		

Joist dimensions

	Joist o	dimensions	with one	pair of SJ	IH [mm]		
Model	Wie	dth*	Height				
	Min.	Max.	Min.	Max.	Max+**		
SJH170	35	90	97	145	220		
SJH80	35	140	147	225	300		
SJH130	35 160		187	300	0		

^{*} When CNA4.0x50 or CSA5.0x50 is used, min joist width is 50 mm

Characteristic capacities – Timber to timber C24

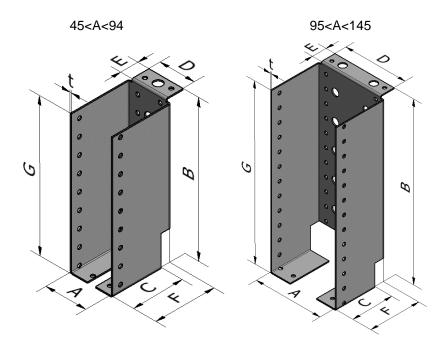
onal actor rection capacities in most to timber of r												
	Characte	Characteristic capacities per pair of half hangers - Timber to timber - C24 [kN]										
	Header	Joist		$R_{1,k} = R_{2,k}$								
Model	n _H	nJ	CNA4.0x35	CNA4.0x35 CNA4.0x50 CSA5.0x35 CSA5.0x50								
SJH80	8	6	5.45 7.84 9.53 10.88									
SJH130	18	10	15.95	22.76	25.31	28.76						
SJH170	26	14	28.35	28.35 39.84 41.23 46.75								

^{**} Reinforcement of joist with full threaded screw type ESCRFTZ required (recommended: 8.0x140 for SJH80, 8.0x220 for SJH130, 8.0x300 for SJH170)

Page 207 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

		Characteristic capacities per pair of half hanger - Timber to timber - C24 [kN]											
	Header	Header Joist R _{3,k} *** R _{4,k}											
Model	n _H	n,	CNA4.0x35	CNA4.0x50	CSA5.0x35	CNA4.0x50	CSA5.0x35	CSA5.0x50					
SJH80	8	6	1.6	1.6	1.6	1.6	2.44	3.92	6.76	7.65			
SJH130	18	10	2.99	2.99	2.99	2.99	6.1	9.8	10.14	11.47			
SJH170	26	14	5.22	5.22	5.22	5.22	8.54	13.72	16.91	19.12			

The capacities are valid for a pair of half hangers, which can be set on the joist symmetrically or on opposed corners, except for $R_{3,k}^{***}$ which is only valid if half joist hangers are set on opposed corners (diagonally). For two pairs of hangers used on the same joist end, capacities can be multiplied by 2.

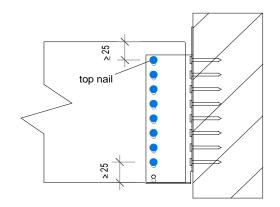

D48 TFU Joist hanger

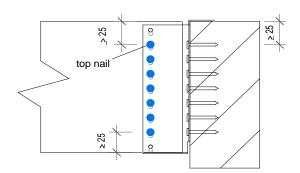
Product Name	Material reference acc. to clause II-1	Alternative Names
TFU	Steel ref 1 - Steel ref 2	-

Dimensions

Difficusions			Dimono	iono	[mm.]						Но	les		
Blank			Dimens	sions	lmmj					Hea	der		Jo	ist
	Α	В	С	D	Е	F	G	t	Qty	Size	Qty	Size	Qty	Size
TFU A/140	45-69	99-143	61	43	20	63-75	96-140	1.5	3	Ø11	12	Ø5	16*	Ø5
TFU A/180	45-69	144-183	61	43	20	63-75	141-180	1.5	4	Ø11	16	Ø5	20*	Ø5
TFU A/220	45-69	184-223	61	43	20	63-75	181-220	1.5	5	Ø11	20	Ø5	24*	Ø5
TFU A/260	45-69	224-263	61	43	20	63-75	221-260	1.5	6	Ø11	24	Ø5	28*	Ø5
TFU A/300	45-69	264-303	61	43	20	63-75	261-300	1.5	7	Ø11	28	Ø5	32*	Ø5
TFU A/140	70-94	103-143	61	68	20	63-75	100-140	1.5	3	Ø11	12	Ø5	16*	Ø5
TFU A/180	70-94	144-183	61	68	20	63-75	141-180	1.5	4	Ø11	16	Ø5	20*	Ø5
TFU A/220	70-94	184-223	61	68	20	63-75	181-220	1.5	5	Ø11	20	Ø5	24*	Ø5
TFU A/260	70-94	224-263	61	68	20	63-75	221-260	1.5	6	Ø11	24	Ø5	28*	Ø5
TFU A/300	70-94	264-303	61	68	20	63-75	261-300	1.5	7	Ø11	28	Ø5	32*	Ø5
TFU A/140	95-119	103-143	63.5	93	20	66-78	100-140	1.5	6	Ø11	12	Ø5	16	Ø5
TFU A/180	95-119	144-183	63.5	93	20	66-78	141-180	1.5	8	Ø11	16	Ø5	20	Ø5
TFU A/220	95-119	184-223	63.5	93	20	66-78	181-220	1.5	10	Ø11	20	Ø5	24	Ø5
TFU A/260	95-119	224-263	63.5	93	20	66-78	221-260	1.5	12	Ø11	24	Ø5	28	Ø5
TFU A/300	95-119	264-303	63.5	93	20	66-78	261-300	1.5	14	Ø11	28	Ø5	32	Ø5
TFU A/140	120-145	103-143	61	118	20	63-75	100-140	1.5	6	Ø11	12	Ø5	16	Ø5
TFU A/180	120-145	144-183	61	118	20	63-75	141-180	1.5	8	Ø11	16	Ø5	20	Ø5
TFU A/220	120-145	184-223	61	118	20	63-75	181-220	1.5	10	Ø11	20	Ø5	24	Ø5
TFU A/260	120-145	224-263	61	118	20	63-75	221-260	1.5	12	Ø11	24	Ø5	28	Ø5
TFU A/300	120-145	264-303	61	118	20	63-75	261-300	1.5	14	Ø11	28	Ø5	32	Ø5
Permitted deviation	-	±1.0	±1.0	±1.0	±1.0	±1.0	-	-	-	-	-	-	-	-

^{*} Up to this number




Page 209 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Characteristic capacity for TFU - Timber to Timber - C24

Model	Fast	teners		R _{1.k} and	R _{2.k} [kN]		R _{3.k} [kN]
Model	nH	nJ	CNA4,0x35	CNA4,0x40	CNA4,0x50	CNA4,0x60	All nails
TFU A/100 (96)	6	6	3.4	3.9	4.8	5.6	6.31 / k _{mod}
TFU A/120	8	8	5.6	6.4	8	9.2	7.64 / k _{mod}
TFU A/141	10	10	8.3	9.4	11.8	13.5	8.97 / k _{mod}
TFU A/158	12	12	11.3	12.8	16	18.2	10.29 / k _{mod}
TFU A/181	14	14	14.7	16.6	20.7	23.4	11.62 / k _{mod}
TFU A/198	16	16	18.3	20.6	25.6	28.8	12.95 / k _{mod}
TFU A/221	18	18	22	24.8	30.7	34.4	14.28 / k _{mod}
TFU A/238	20	20	25.9	29.1	35.9	40.1	15.61 / k _{mod}
TFU A/261	22	22	29.9	33.5	41.3	45.8	16.94 / k _{mod}
TFU A/278	24	24	33.9	37.9	46.6	51.6	18.26 / k _{mod}
TFU A/300	26	26	38	42.4	52	57.3	19.59 / k _{mod}

Only the nails with a distance to the border according to EN1995-1 can be considered

Page 210 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Characteristic capacity for TFU - Timber to Rigid Support for A <70 and A ≥ 95mm

		eners			A < 70 and A ?		R _{3.k} [kN]
Model	n _H	nJ	CNA4,0x35	CNA4,0x40	CNA4,0x50	CNA4,0x60	All
TFU A/100 (96)	1	6	min of: 3,9/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 4,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 4,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 4,2/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	2.65 /k _{mod}
TFU A/120	1	8	min of: 5,5/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 5,9/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 5,9/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 6,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	3.21 /k _{mod}
TFU A/141	2*	10	min of: 7,3/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 7,9/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 7,9/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 8,2/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	3.77 /k _{mod}
TFU A/158	2*	12	min of: 9,2/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 10,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 10,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 10,4/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	4.32 /k _{mod}
TFU A/181	2*	14	min of: 11,2/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 12,4/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 12,4/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 12,8/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	4.88 /k _{mod}
TFU A/198	2*	16	min of: 13,3/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 14,8/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 14,8/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 15,4/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	5.44 /k _{mod}
TFU A/221	2*	18	min of: 15,5/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 17,4/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 17,4/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 18,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	6,0 /k _{mod}
TFU A/238	2*	20	min of: 17,8/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 20,0/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 20,0/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 20,9/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	6.56 /k _{mod}
TFU A/261	2*	22	min of: 20,2/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 22,8/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 22,8/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 23,8/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	7.11 /k _{mod}
TFU A/278	2*	24	min of: 22,6/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 25,6/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 25,6/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 26,8/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	7.67 /k _{mod}
TFU A/300	2*	26	min of: 25,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 28,5/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 28,5/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 29,9/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	8.23 /k _{mod}

^{*} up to, for lower load it's an option to use only the bolts in the upper line ; $n_b = \text{number of bolts}$

Page 211 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

Characteristic capacity for TFU - Timber to Rigid Support for 70 ≤ A < 95 mm

	Fast	eners	R _{1.k}	and R _{2.k} [kN] f	for 70 ≤ A < 95	mm	R _{3.k} [kN]
Model	n _H	nJ	CNA4,0x35	CNA4,0x40	CNA4,0x50	CNA4,0x60	all
TFU A/100 (96)	2	6	min of: 2,7/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 2,8/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 3,0/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 3,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	2.65 /k _{mod}
TFU A/120	2	8	min of: 3,9/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	3,9/k _{mod} ^{0.5} ; 4,1/k _{mod} ^{0.5} ;		min of: 4,7/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	3.21 /k _{mod}
TFU A/141	4*	10	min of: 5,3/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 5,6/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 6,2/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 6,4/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	3.77 /k _{mod}
TFU A/158	4*	12	min of: 6,8/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 7,2/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 8,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 8,4/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	4.32 /k _{mod}
TFU A/181	4*	14	min of: 8,5/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 9,0/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 10,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 10,6/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	4.88 /k _{mod}
TFU A/198	4*	16	min of: 10,2/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 10,8/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 12,3/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 12,9/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	5.44 /k _{mod}
TFU A/221	4*	18	min of: 12,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 15,0/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 14,6/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 15,4/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	6.0 /k _{mod}
TFU A/238	4*	20	min of: 14,0/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 17,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 17,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 18,0/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	6.56 /k _{mod}
TFU A/261	4*	22	min of: 16,0/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 19,4/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 19,7/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 20,7/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	7.11 /k _{mod}
TFU A/278	4*	24	min of: 18,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 21,8/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 22,4/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 23,6/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	7.67 /k _{mod}
TFU A/300	4*	26	min of: 20,3/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: /k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 25,1/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	min of: 26,5/k _{mod} ^{0.5} ; n _b x5.8/k _{mod}	8.23 /k _{mod}

 $^{^{\}star}$ Up to, for lower load it's an option to use only the bolts in the upper line ; $n_b = number\ of\ bolts$

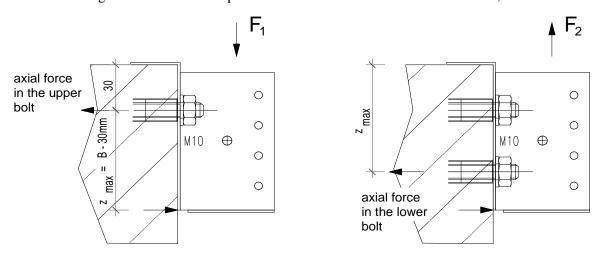
For uplift capacities F_2 for connection to rigid support: the lowermost bolt hole has to be use for fixing, in this case the same capacities as for download can be consider.

For connection with bolts have to check the capacities of the bolts too.

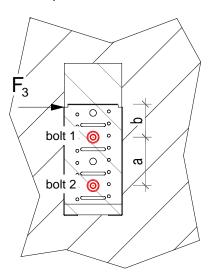
For F₁ and F₂ have to be check the lateral capacities of bolts:

 $n_b = number of bolts$

Each bolt has to have a minimum capacity, which are able to absorb the following force:


 $F_{lat.bolt} = F_{1.d} \ / \ n_b \quad or \quad F_{lat.bolt} = F_{2.d} \ / \ n_b$

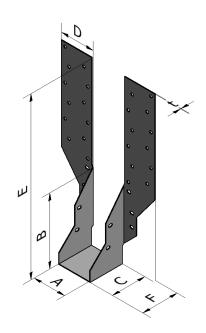
The axial force in the upper bolt / bolts have to be calculate as following:


 $F_{lat.bolt} = F_{1.d} \, \times 25 mm \, / \, z_{max} \; \; or \; \; F_{lat.bolt} = F_{2.d} \, \times 25 mm \, / \, z_{max}$

The bolts have to be check also for the load combination from axial and lateral, and the combination from F1 and F2.

Page 212 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07

The forces in the bolts for F_3 have to be calculate as shown next. An axial part for the bolts from the force F_3 can be neglected.



D49 THA Straps hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
THA	Steel ref 1 - Steel ref 2	-

Dimensions

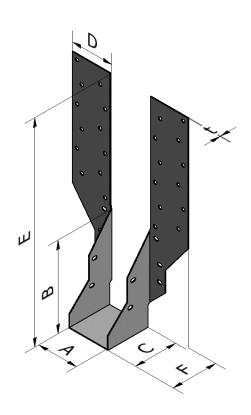
		F	limono	ione In	nm1			Holes					
Blank		L	Dimens	ions [ii				Head	ler	Joist			
	Α	В	С	D	Е	F	t	Qty	Size	Qty	Size		
THA38	38	113.5	62.5	60.7	226	64.6	1.2	22	Ø4.1	6	Dome Holes		
THA44	44	110.5	62.5	60.7	223	64.6	1.2	22	Ø4.1	6	Dome Holes		
THA50	50	107.5	62.5	60.7	220	64.6	1.2	22	Ø4.1	6	Dome Holes		
THA75	75	120	62.5	60.7	232.5	64.6	1.2	22	Ø4.1	6	Dome Holes		
THA100	100	107.5	62.5	60.7	220	64.6	1.2	22	Ø4.1	6	Dome Holes		
Permitted deviation	-	-	±1.0	±1.0		±1.0	1	-	-	-	-		

Parameters have to be used with equation in Annex C.

Parameters for THA - F1 - Timber to timber

Model	I	l _{ef}	S	B _{eff}	a-0.5a _c	е	C _{hor}	kef	d	n _{eff} (per flange) round wire
THA38	59.5	109	40	93	114	34.5	10	0.35	1.2	7
THA44	59.5	113	40	93	114	34.5	10	0.35	1.2	7
THA50	59.5	115	40	93	114	34.5	10	0.35	1.2	7
THA75	59.5	120	40	85	114	34.5	10	0.35	1.2	7
THA100	59.5	120	40	77	114	34.5	10	0.35	1.2	7

Page 214 of 216 of European Technical Assessment no. ETA-06/0270, issued on 2020-01-07


		Supporting Ti	mber Fasteners	Supported Timber Fasteners			
Hanger Type	Installation	3.75	x 30 ST	× 30	x 75		
manger Type	Configuration	Тор	Face	ST 3.75	SS 3.75		
	Face Fix	-	20	4	-		
TILA	Wrap Over	4	8	4	-		
THA	Face Fix	-	20	-	4		
	Wrap Over	4	8	-	4		

D50 THAI Straps hanger

Product Name	Material reference acc. to clause II-1	Alternative Names
THAI	Steel ref 1 - Steel ref 2	-

Dimensions

		г	limana	ione In	am1					Н	loles		
Blank		L	Jillielis	ions [n					Head	der		J	oist
	Α	В	С	D	E	F	t	Qty	Size	Qty	Size	Qty	Size
THAI222	40	238	57	58.2	580	65	1.2	60	Ø4	-	1	6	Closed Pan
THAI1.81/22	46	235	57	58.2	577	65	1.2	60	Ø4	-	-	6	Closed Pan
THAI3522	59	228	57	58.2	570	65	1.2	60	Ø4	-	-	6	Closed Pan
THAI322	65	225	57	58.2	568	65	1.2	60	Ø4	-	-	6	Closed Pan
THAI422	90	220	57	58.2	555	65	1.2	60	Ø4	-	-	6	Closed Pan
THAI-2	45 - 150	213	63.5	63.5	550	67	2	56	Ø4.34	-	-	2	Closed Pan
THAI1200	38 - 150	(560-A)/2	63.5	63.5	(1200-A)/2	67	2	48	Ø5	8	Ø13	6	Ø5
Permitted deviation	-	ı	±1.0	±1.0	-	±1.0	-	-	-	-	-	1	-

Parameters have to be used with equation in Annex C.

Parameters for THAI - F1 - timber to timber

Model	I	l _{ef}	S	B _{eff}	a-0.5a _c	е	C _{hor}	kef	d	n _{eff} (per flange) round wire	n _{eff} (per flange) Ring Shank nails
THAI222	57	107	39	87	200	37	15	1	1.1	5	2.5
THAI1.81/22	57	110	39	87	200	37	15	1	1.1	5	2.5
THAI3522	57	117	39	84	200	37	15	1	1.1	5	2.5
THAI322	57	117	39	83	200	37	15	1	1.1	5	2.5
THAI422	57	117	39	76	200	37	15	1	1.1	5	2.5
THAI-2	63.5	124	49	85	200	37	15	1	1.1	5	2.5
THAI1200	63.5	124	49	109-0.32A	200	37	15	1	1.1	5	2.5

Hanger Type	Installation		Supporting Tir	Supported Timber Fasteners			
		ss	3.75x75	ARS 4	.0x50	5x30	SS 3.8x38
	Configuration	Тор	Face	Тор	Face	ST 3.75	
THAI*	Face Fix	-	20	-	-	2	-
		-	1	-	20	-	2
	Wrap Over	4	2	-	•	2	-
		-	-	4	2	-	2

^{*}Except THAI1200

Hanger Type		;	Supporting Tim	Supported Timber Fasteners			
	Installation	ARS	4.0x50*	SSH1:	2.0x60		
	Configuration	Тор	Face	Тор	Face	ARS 4.0x50*	
THAI1200	Face Fix	-	20	-	-	2	
	i ace rix	-	-	_	4	2	
	Wrap Over	4	2	_	-	2	

^{*} For width $A \le 50$ mm, ARS to be considered should be ARS 4.0x35

Parameters for THAI - F1 - timber to concrete

Model	S B _{eff}		Z _{max}	е	d
THAI1200	49	109-0.32A	(1200-A)/2 - 310	37	1.1